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ABSTRACT

As aerospace systems continue to evolve in addressing newer challenges in air

and space transportation, there exists a heightened priority for significant improvement in

system performance, cost effectiveness, reliability, and safety. In order to address

system complexity, aerospace design is decomposed along disciplinary specialty lines.

To complete system design, tools must be available for coordination or re-integration of

the individual disciplinary efforts. Within this process, a probabilistic methodology is

needed to include various types of uncertainties and to assess and design for system

reliability. Finally, to achieve design improvements, optimization tools are also

necessary. Tools, which synthesize multidisciplinary integration, probabilistic analysis,

and optimization, are therefore needed to facilitate design decisions allowing trade-offs

between cost and reliability.

This study investigates tools for probabilistic analysis and probabilistic

optimization in the multidisciplinary design of aerospace systems. A probabilistic

optimization methodology is demonstrated for the low-fidelity design of a reusable

launch vehicle at two levels, a global geometry design and a local tank design.

Probabilistic analysis is performed on a high fidelity analysis of a Navy missile system.

Furthermore, decoupling strategies are introduced to reduce the computational effort

required for multidisciplinary systems with feedback coupling.
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CHAPTER I

INTRODUCTION

The maturity of the aerospace industry is reflected in the modern challenge of

engineering increasingly complex systems. At the same time, there exists a heightening

priority to assess and design for cost effectiveness and reliability. As a result, design

goals for future generation systems are being expressed in terms of risk and cost. For

example, goals for next generation reusable launch vehicles (RLV) include improving

safety to achieve a less than 1/10,000 risk of crew loss and reducing cost to $1,000/lb or

less for payload delivery (NASA 2000). These goals represent a ten-fold improvement

in cost and a one hundred-fold improvement in the reliability over the current space

shuttle system. Whether they are achievable remains to be seen; first, multiple design

approaches and several emerging technologies need to be evaluated and compared.

Assessing risk and cost for new systems with emerging technologies is extremely

difficult. Historical databases based on legacy systems have questionable application to

novel systems. Analytical models are an alternative but have their own limitations. A

traditional approach to design (in which disciplinary analysis is done independently and

in sequence) would be extremely expensive and time consuming for this kind of

comparative evaluation. Furthermore, risk design requirements given in probabilistic

terms (i.e. required probabilities of success or failure) cannot be targeted through

conventional deterministic design methods (which deal with risk in terms of factors of

safety). Thus a design process that effectively balances cost and risk needs to
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incorporate multidisciplinary, concurrent design techniques along with probabilistic

analysis in an optimization framework.

To meet modern aerospace design goals (such as those for the 2nd generation

RLV), a multidisciplinary integration and optimization strategy is needed. In the early

conceptual stage, designs need to be evaluated more quickly when less detail is available.

At this stage, lower fidelity models may be acceptable (assuming these models do not

sacrifice essential performance characteristics) in order to identify the most attractive

designs for further development. As designs are developed in more detail (i.e. during

preliminary and detailed design phases), higher fidelity analysis tools can be employed.

For example, response surface models for system performance are used during the early

stages of conceptual design; they allow for quick analysis and easy optimization.

Integration of higher fidelity analysis codes across disciplines is more challenging. These

codes require a greater computational effort, a problem that is exacerbated by

optimization and probabilistic analysis algorithms that require multiple iterations. Also,

the inter-disciplinary coupling of higher fidelity analyses creates further complications.

At the later stages, more expensive analysis through wind tunnel experiments and

component level tests are appropriate; this information needs to be synthesized from a

multidisciplinary system perspective as well. Finally, the sensitivity of design elements

to overall cost and risk influence the level of fidelity required at each stage of

development.

Decisions that have the greatest effect on system risk and cost are made during the

conceptual design stage. For this reason, despite the lower fidelity of the tools used, cost

and risk evaluation and optimization needs to be a vital part of conceptual design
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analysis. It is also recognized that such design decisions need to account for the

uncertainties in design variables that significantly impact cost and risk. However, current

methods of system performance and risk assessment, capable of including uncertainty

effects, are typically employed only after the system has been designed in detail, and in

some cases, manufactured and tested. This stage is quite late in the system development

process when it is difficult to make adjustments that would significantly reduce either

cost or risk. Therefore, reliability analysis methods that can be applied during conceptual

design and incorporated in a multidisciplinary system are needed.

In order to effectively incorporate probabilistic analysis in a progressive design

strategy that builds from conceptual design (with low fidelity models) to detailed design

(with high fidelity models), the following capabilities are needed during the early stages

of design:

(1) Failure sequence diagram construction (Karamchandani, 1987;

Swaminathan and Smidts, 1999; Thoft-Christensen and Murotsu, 1986)

without detailed information, based on initial concepts and approximate

component descriptions;

(2) Probabilistic system reliability analysis (Haldar and Mahadevan, 2000;

Mahadevan and Dey, 1997; Mahadevan and Liu, 2002)

(3) Sensitivity analysis linkages between system events, component events,

and major design variables (Ryan, 1993; Mahadevan et al, 1997)

(4) Risk vs. cost trade-off computations at component level and system level

(Cruse et al, 1994; Frangopol, 1985)
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(5) Risk allocation using a combination of optimization and Bayesian

statistical analysis methods (Martz and Waller, 1982; Mahadevan et al,

2001; Mahadevan and Liu, 1998; Mahadevan, 1992).

These capabilities are being developed for the 2nd generation RLV conceptual

design and a Navy hypersonic missile design at Vanderbilt University in collaboration

with researchers at NASA Langley Research Center. In this report, capabilities two

through four are demonstrated for three related applications: a conceptual

multidisciplinary RLV design based on response surfaces, a structural component design

for an RLV liquid hydrogen tank, and a higher fidelity multidisciplinary analysis of a

Navy missile system.

Multidisciplinary Optimization in Aerospace Design

Aerospace design is a complex process requiring analysis and optimization across

multiple disciplines. In many cases, relatively mature (high and low fidelity) disciplinary

analysis tools are available. These disciplinary analyses cannot be taken in isolation

since they are coupled to one another through shared input and output. Furthermore,

system design objectives and constraints may span several disciplines. Thus, a design

process needs to address issues of the coupled multidisciplinary system. Integrating

disciplinary analyses into a multidisciplinary framework and finding practical ways to

solve system optimization problems is a serious challenge.

The first aspect of the multidisciplinary design challenge lies in building a system

analysis from a collection of disciplinary analyses. The system architecture must be

thoroughly understood in order to identify how the individual disciplines are coupled. In
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addition to this technical challenge, organizational and/or computational difficulties often

present the largest obstacles in creating a multidisciplinary analysis. The second aspect

of the challenge is in solving system optimization problems for the purpose of design.

Here, the complexity, stability, and efficiency of the system analysis have significant

consequences.

Several studies have addressed RLV design as a multidisciplinary optimization

problem (MDO) (Unal et al, 1998a; Braun et al, 1995; Braun and Moore, 1996; Unal et

al, 1998b), and developed strategies on a number of fronts. One front may be considered

the ‘design’ environment. This includes both organizational (Monell and Pinland, 2000)

and computational (Salas and Townsend, 1998; Padula et al, 1999; NASA et al, 2001)

frameworks that allow automation of multidisciplinary analyses. For example, the

integration software, Model Center (Phoenix Integration, 2002) provides the framework

for the multidisciplinary analysis of the missile system presented in Chapter 4. A second

front for multidisciplinary design research is the multidisciplinary optimization (MDO)

problem formulation. A review of MDO problem formulations and implementation

issues is given in Alexandrov and Kodiyalam (Alexandrov and Kodiyalam, 1998).

In addition to the design environment and the MDO formulation, a third front for

MDO research includes approximation modeling. These models are useful in allowing

trade-offs between analysis fidelity and computational complexity at the early stages of

design. This concept can also be applied to a single multidisciplinary optimization. For

example, in approximation/model management optimization (AMMO) (Alexandrov and

Lewis, 2000), a trust region approach is used to approximate a system objective with a

low-fidelity model, update the model at each optimization iteration, and resort to higher



6

fidelity approximations when needed. Various methods are available to build these

initial, low-fidelity models including response surface models, Taylor series

approximations, splines, and Kriging models. In particular, a D-optimal response

surface strategy has been implemented for a RLV sizing application using 3 disciplines:

geometry, weights, and aerodynamics (Unal et al, 1998a). This response surface

formulation provides the baseline for the probabilistic optimization approach presented in

the second chapter.

A final area of concern for aerospace design research is the optimization

objective. As stated earlier, program goals have been expressed in terms of cost

objectives (e.g, $1,000/lb payload) and risk objectives (e.g, 1/100 risk of crew loss). It is

logical, then, that the design optimization should incorporate these goals. These goals

could be incorporated through either the optimization objective function or the

constraints. In both the RLV and missile designs, minimizing other parameters

considered roughly proportional to cost, often approximates cost optimality. For

example, Braun and Moore (1996) compare a collaborative optimization analysis using

four different optimization objectives: development cost, gross lift-off weight, vehicle

empty weight, and ∆V (velocity change from the rocket equation).

Incorporating risk goals explicitly in the optimization is a concept that

needs significant development in multidisciplinary aerospace design. Risk is a concept

that is difficult to measure and challenging to model. A traditional approach is to model

risk via factors of safety. Factors of safety provide a qualitative measure of risk, but

cannot be translated to probabilistic metrics (such as 1/100 risk of crew loss). Another

tactic is to model risk from empirical data obtained through testing or historical records.
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For example, NASA has developed a reliability and maintainability analysis and

estimation tool (RMAT), which models RLV operations and supports reliability through

a comparison to historical database records from current operational aircraft (Unal et al,

1998b). Response surfaces are generated from RMAT for use in the optimization of

performance reliability. Unfortunately, historical records have limited use for novel

designs, and testing is prohibitively expensive for complex systems.

An alternate approach is to estimate risk through simulation of physics-based

models by explicitly considering the uncertainty in the input parameters or in the model

itself. Deterministic approaches that have been the focus of design optimization methods

thus far fail to account for these uncertainties. Therefore a probabilistic approach is

needed for risk-based optimization under uncertainty and is pursued in this study.

Probabilistic Analysis and Optimization

Aerospace design optimization to date has been based on a deterministic

approach. Input variables are assumed to be non-varying and the system is assumed to

behave exactly as an analysis model predicts. In this case, the analysis output will be

deterministic, and there will not be any uncertainty-based metric for assessing risk. A

probabilistic approach, on the other hand, allows for random variation in the input

variables and can also consider the error between model predictions and true system

behavior. In this case, the output will also have random variation. This random variation

is characterized by a probability distribution function (PDF) defined by its shape and a set

of distribution parameters (e.g. mean and standard deviation). Risk objectives can then

be defined in terms of this output uncertainty (Haldar and Mahadevan, 2000). A
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probabilistic optimization will then characterize uncertain objectives and constraints in

terms of probability distribution parameters and statistics (e.g. minimize µZ subject to P

(x1 < x < x2) ≤ pf, where µz is the mean of output z and pf is some acceptable probability of

failure for x to be in the interval [x1 , x2]).

In the physics-based limit-state method for reliability modeling, a performance

function (gi) is defined in terms of the random variables corresponding to a failure

criterion. Typically, gi < 0 represents failure, gi > 0 represents success, and gi = 0 is

referred to as the limit state (Haldar and Mahadevan, 2000). The probabilities of failure

may be evaluated with a number of probabilistic techniques including simulation

methods (e.g. Monte Carlo, adaptive importance sampling, Latin Hypercube sampling,

etc.) or analytical approximation methods (First Order Reliability Method (FORM),

Second Order Reliability Method, First Order Second Moment Methods) (Haldar and

Mahadevan, 2000). For optimization problems, an analytical approximation method is

preferred due to computational efficiency.

Probabilistic optimization has been the focus of several recent research efforts.

Optimization formulations have three components (design variables, the objective

function, and constraints) leaving a few alternatives for stating the probabilistic problem.

First, input variables (including design variables) are uncertain but can be characterized

by their distribution parameters. Thus optimization problems may have design variables

that include mean values, standard deviations, a combination of both, or other parameters

describing their randomness (Kowal and Mahadevan, 1998). (In addition to the design

variables, other input variables may also be modeled as random variables. However, this

does not complicate the optimization process, since all random variables are considered
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together in the evaluation of the probabilistic constraint.) Second, the objective function

may be in terms of failure probability (e.g. minimize probability of failure), an

independent cost or performance measure (e.g. minimize mean development cost), or

may be a cost or performance measure that depends on reliability (e.g. minimize Total

Cost = Development Cost + Failure Cost * Probability of Failure). Finally, constraints

may include either cost or reliability design goals that are not considered in the objective

function.

Another consideration for the probabilistic optimization formulation addresses the

level of the failure. Physics-based limit states usually represent component-level events,

where probabilities of failure can be calculated fairly easily. System-level failure results

from component failures in series, parallel, or a combination of both. Event sequence

diagrams may be used to define the system. For large systems with non-independent

components, calculation of system failure probabilities can be time consuming. The

branch and bound method has been used to streamline the system calculation (Thoft-

Christensen and Murotsu, 1986), but it is still difficult to employ within an optimization

procedure. Optimum design of framed structures has been undertaken, using component-

level reliability constraints and a system-level objective function (weight of system

structure) (Frangopol, 1985; Mahadevan, 1992). Oakley et al (1998) combine stochastic

optimization with adaptive response surfaces. This work considers two types of

uncertainty (variability of operating conditions and uncertainty in extreme values) under

a system of multiple load cases. Leheta and Mansour (1997) apply a system reliability

optimization formulation to structural design of marine stiffened panels. They employ

the First Order Reliability Method to determine component reliability and use an
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approximation for the reliability of a series system that includes multiple failure

mechanisms.

Probabilistic optimization problems (also called reliability-based design

optimization or RBDO) have been solved through a number of techniques. These

techniques employ standard linear or non-linear programming algorithms and analytical

reliability analysis methods to solve carefully formulated probabilistic problems. In the

reliability index approach (RIA), probabilistic constraints are reformulated in terms of

reliability indices. In the performance measure approach (PMA), the constraints are

transformed through an inverse reliability analysis. RIA and PMA methods are

combined in an adaptive scheme that uses RIA when the probabilistic constraint is active

(i.e. the design point is on the constraint boundary) and PMA when the constraint is

inactive (Oakley et al, 1998). In Putko et al (2001), a methodology using sensitivity

derivatives is presented for design optimization using computational fluid dynamics

(CFD) codes. Tryon et al (2002) also present a sensitivity-based optimization

framework, which they demonstrate on a vibration control problem. In Royset et al

(2001), a decoupling approach is presented for three types of probabilistic optimization

problems; in this methodology, constraints originally given in terms of reliability indices

are replaced by a function representing the limit state minimum within a hypersphere of

specified radius.

In the applications presented in this report, probabilistic formulations are chosen

which use mean values as the design variables and probabilities of failure as constraints.

A direct (coupled) approach using the first order reliability method (FORM) is chosen for

the reliability analysis.
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Reliability-Based Multidisciplinary Optimization

The goal of this study is to present a strategy for conceptual system design

that simultaneously addresses both cost and risk requirements. The foundation of this

strategy is reliability-based multidisciplinary optimization (or multidisciplinary

optimization under uncertainty), a technique that must combine MDO methods and

probabilistic analysis. In this case, computational effort is a major concern since the

direct approach involves nested loops for multidisciplinary analysis, probabilistic

analysis, and optimization. Three applications are given for demonstration. The first

application, presented in the following chapter, is the global design of a reusable launch

vehicle based on geometry, weights, and aerodynamic disciplines. In this example, a

low-fidelity approach is taken by reducing the multidisciplinary analysis through

response surfaces. In Chapter III, the global design result is carried forward in local

design, i.e. structural sizing of a liquid hydrogen tank. This application demonstrates the

integration of local and global designs; it also uses system reliability concepts to

represent multiple failure modes. Next, Chapter IV highlights the unique challenges for

probabilistic optimization created by coupled multidisciplinary systems, and presents

techniques for reducing the computational effort for these systems. In Chapter V,

probabilistic analysis is performed on a five-discipline analysis of a hypersonic missile

system. Here, the difficulties of using higher fidelity multidisciplinary analyses are made

evident and directions for future research are suggested. The final chapter summarizes

the work presented and recommends directions for future investigation.
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CHAPTER II

PROBABILISTIC GLOBAL DESIGN OF A REUSABLE LAUNCH VEHICLE

In this chapter, the probabilistic optimization methodology is demonstrated for the

global design of a reusable launch vehicle. This is done by solving an optimization

problem, which is formulated with a cost-related objective (vehicle empty weight) and

risk-based constraint (probability of satisfying a pitching moment condition). The system

analysis is based on three disciplines: geometry, weights, and aerodynamics. Response

surfaces are used to consolidate the multidisciplinary analysis to facilitate the

probabilistic optimization. The analysis and optimization take into account the

uncertainties in design variables that have important effects on safety, performance, and

cost.

This work builds upon a deterministic optimization application for RLV

conceptual design originally developed by Unal et al (1998a); the deterministic problem

is re-formulated for probabilistic system reliability analysis and optimization. In the

first section of this chapter, the deterministic problem is explained in detail. This is

followed by a section describing the probabilistic re-formulation including details of

modeling uncertainty. In the “Results and Discussion” section, optimal designs, based

on several constraint criteria, are then compared with those of the deterministic problem.

This section also includes an analysis of probabilistic sensitivities. Finally, some specific

conclusions are made regarding this application of probabilistic design.
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Launch Vehicle Conceptual Design: Deterministic approach

As a first effort in the RLV multi-disciplinary design analysis, low fidelity

second-order response surface models have been developed for a sizing analysis of a

wing-body, single stage-to-orbit vehicle (Unal et al, 1998). For this application, a launch

vehicle is sized to deliver 25,000 lb in payload from the Kennedy Space Center to the

International Space Station. The selected vehicle geometry (shown in Fig. 1) has a

slender, round fuselage and a clipped delta wing. Elevons provide aerodynamic and pitch

control. Vertical tip fins provide directional control and body flaps provide additional

pitch control.

Figure 1: RLV Conceptual Design

As a first step in the conceptual design, three disciplines (geometry,

weights/sizing, and aerodynamics) are considered in a constrained optimization problem.

A vehicle geometry that minimizes mean dry weight is expected to minimize overall cost,

so this is chosen as the objective function. For stability, the pitching moment (Cm) for the

vehicle should be zero or extremely close to zero. In addition, Cm should decrease as the

angle of attack increases. This is achieved by adjusting the control surfaces to trim the
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vehicle as the angle of attack is increased. Thus the aerodynamic analysis for pitching

moment constrains the optimization.

The optimal vehicle design is determined by six design variables: fineness ratio

(fuselage length / radius), wing area ratio (wing area / radius2), tip fin area ratio (tip fin

area / radius2), body flap area ratio (body flap area / radius2), ballast weight fraction

(ballast weight/ vehicle weight), and mass ratio (gross lift-off weight/ burnout weight).

The design variables are summarized in Table 1. For the aerodynamic part of the

analysis, three additional variables are required to describe the adjustment of control

surfaces in order to trim the vehicle: angle of attack, elevon deflection, and body flap

deflection. The pitching moment constraint must hold during all flight conditions; nine

flight scenarios (constructed with three velocity levels and three angles of attack) are

used as a representative sample. The representative velocities (Mach 0.3, Mach 2, and

Mach 10) were selected as those originally used in Unal, et al (1998a) for which response

surfaces have already been generated. The control variables used for each of the nine

scenarios are given in Table 2. The deterministic optimization problem may then be

written as follows: ‘Minimize vehicle dry weight (W) such that the pitching moment

coefficient (Cm) for each of 9 scenarios is within acceptable bounds [- 0.01,+0.01].’

Table 1: Design Variables

Design variables Lower bound Upper bound

Fuselage finess ratio (fr) 4 7
Wing area ratio (war) 10 20
Tip fin area ratio (tfar) 0.5 3
Body flap area ratio (bfar) 0 0
Ballast wt fraction (bl) 0 0.04
Mass Ratio (mr) 7.75 8.25
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Table 2: Control Variables

Nominal
Angle of Attack

Minimum
Angle of Attack

Maximum
Angle of Attack

Aero control variables Lower
bound

Upper
bound

Lower
bound

Upper
bound

Lower
bound

Upper
bound

Mach 0.3
Angle of attack, deg 12 12 5 5 15 15
Elevon deflection, deg -15 10 -15 10 -15 10

Mach 2.0
Angle of attack, deg 10 10 5 5 15 15
Elevon deflection, deg -15 10 -15 10 -15 10
Body flap defl, deg -10 10 -10 10 -10 10

Mach 10
Angle of attack, deg 30 30 25 25 40 40
Elevon deflection, deg 0 30 0 20 0 20
Body flap defl, deg 0 20 0 20 0 20

This is a multidisciplinary problem requiring the synthesis of information from

three analysis codes: a geometry-scaling algorithm, a weights and sizing code (CONSIZ)

and an aerodynamic code (APAS). Integrating these codes is somewhat complex since,

in addition to the variables already described, there are numerous, non-design variables

that are passed between the codes. This effort would be computationally expensive for

an optimization algorithm. Thus Unal et al (1998a) conducted two over-determined D-

optimal experimental designs to reduce these analyses to a set of second order response

surface models that relate the vehicle dry weight (W) to the 6 geometry variables, and the

pitching moment coefficient (Cm) to both the geometry and control variables. (Note:

There are 30 independent variables in total. The control variable values are specific to a

scenario. All 9 scenarios involve adjusting the angle of attack and elevon deflection but
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only the supersonic and hypersonic response surface models specifically include body

flap deflection as one of the statistically significant random variables.)

In the design of experiments for the weight function, forty-five multidisciplinary

analyses were conducted according to the design matrix described in Table 3. For each

row in the matrix, an analysis is run with design variable values given according to their

corresponding column of normalized values. Cells in the matrix with a value of –1

denote the lowest variable value; those with a value of zero denote the midrange value;

and those with a value +1 denote the highest variable value. These do not necessarily

correspond to the constraint bounds used in the optimization but rather depict the range of

values over which the response surfaces are valid. It is important that the optimum

domain be within the domain of the response surfaces. If the response surfaces lead to an

optimum domain outside the range of the response surfaces, then an adaptive “trust

region” strategy may be needed (Zou et al). It is also desirable to check the optimum

solution with a full high-fidelity analysis if possible. Also, in the initial conceptual

design stage, the feasible response surface ranges may be determined using expert

opinion. In this case the optimization domain is the same as the response surface domain

except that the body flap area is additionally constrained.

Curve-fitting the experiment results produces a 2nd degree polynomial for the dry

weight of the vehicle. A similar methodology was used to generate 2nd degree response

surfaces for pitching moment coefficient. The response surface polynomials are

expressed in terms of the normalized variables from the D-optimal matrix (values

between –1 and 1), which we will refer to as reduced variables. These are distinguished

from the original variables given in Tables 1 and 2.
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Once the response surfaces were generated, a gradient-based non-linear optimizer

was used to solve the optimization problem. A verification run of the multidisciplinary

analysis was performed at the optimal design point. The result agreed with the response

surface prediction within 1%.

Table 3: 6 Parameter D-Optimal Design Matrix (Unal et al, 1998a)

FR WA TFA BFL BL MR

1 -1 -1 -1 -1 -1 1
2 -1 -1 -1 -1 1 -1
3 -1 -1 -1 1 -1 0
4 -1 -1 -1 1 1 1
5 -1 -1 0 1 -1 -1
6 -1 -1 1 -1 -1 1
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
41 1 1 0 0 -1 1
42 1 1 1 -1 -1 -1
43 1 1 1 -1 1 1
44 1 1 1 1 0 -1
45 1 1 1 1 1 1

Launch Vehicle Conceptual Design: Probabilistic Approach

In order to reformulate the above problem in probabilistic terms, the problem is

restated as ‘Minimize mean weight such that the pitching moment coefficient for all 9

scenarios has a low probability (less than 0.1) of failing to be within the acceptable

bounds [-0.01, +0.01].’ Note here that the output parameters (weight, W and pitching

moment, Cm) are random variables. They cannot be known exactly since the inputs and

analysis model, from which they are based, are subject to uncertainty. Therefore
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minimizing the mean weight approximates the weight minimization, and the pitching

moment constraint is estimated as a probability of failure to be within acceptable bounds.

The solution of this revised, probabilistic problem consists of four parts: 1)

characterization of random input variables, 2) defining the limit states for failure, 3)

probabilistic analysis, and 4) optimization.

Characterization of Random Input Variables

Original Variables

The first step is to define the uncertainty of the input variables. From the

standpoint of the conceptual analysis, these distributions will represent statistical

variation in input parameters. However, it is not obvious how this information shall

translate into physical phenomena. For fully designed system, these distributions would

represent uncertainty between as-built dimensions and that specified by the design.

However, details from the conceptual design will inevitably undergo numerous revisions

prior to any kind of physical construction; any relationship between the conceptual design

and the as-built condition will be superceeded by intermediate higher fidelity analysis and

design. Enough data is not yet available to characterize the physical uncertainty of the

as-built dimensions. However, at this stage, a high level of precision is not required.

Therefore, approximate data was constructed based on expert opinion (the experts were

asked to estimate uncertainty of the as-built dimensions based on a full design.) All

distributions were assumed normal (a simplifying assumption to facilitate analysis).

However, any other distribution can be easily included within the probabilistic
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framework used here. The mean values (µ) of the variables are the design variables and

change during the optimization iterations. The standard deviations (σ) were assumed to

be either one third the range or were estimated from an assumed coefficient of variation

(δ) where σ = δ * µ.. Table 4 describes the characterization of these original input

variables.

Reduced Variables

Since these variables are being computed through linear functions of the original

variables, their distribution parameters can be easily found. For example, the original

variable for fuselage finess ratio, fr, has a range from 4 to 7. The response surfaces use a

reduced variable,
5.1

5.5−= fr
FR , where 5.5 is the midrange value and 1.5 is the half-

range. FR will have a mean
51

deviationstandardand,
1.5

5.5
fr

FR
.

σ
σ

µ fr
FR =

−
=µ .

Table 5 describes the reduced variables.

Model Error

In a physics-based reliability model, only a portion of the uncertainty in a system

is accounted for through its input parameters. The analytical model for the RLV is a

regression model (the response surfaces) of a computational model (the multidisciplinary

system analysis) of a conceptual model (based on principles of physics, usually in the

form of partial differential equations) of the real system. Regardless of variation in input,

the conceptual model does not predict real system behavior exactly, the computational

model does not exactly represent the conceptual model, and the regression model
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introduces further error. This regression error can be determined from the residuals of

the least squares, but it is only one of many sources of error introduced by the model. In

addition, the response surfaces were constructed by assuming deterministic values for

many input parameters that in reality are uncertain. Furthermore, “biases” are present in

the computational model due to system dynamics not captured by the model. Reinelt et

al (2002) and Ninness and Goodwin review various strategies for quantifying errors and

uncertainty in the errors of computational models. Oberkampf and Trucano (2002) also

give a thorough review of errors associated with computational fluid dynamics models

and their significance in model validation.

Experimental information is not available during the initial stages of design.

Also, the fidelity requirements at this state may not warrant sophisticated error modeling.

However, in some cases, tolerances on the other input variables may be so tight as to

make them effectively deterministic compared to the effect of model error. Thus, it is

useful to at least estimate model error in conceptual probabilistic analysis. Several

methods for the probabilistic quantification of model error arising from various levels of

approximation are currently under development (Rebba, 2002). In this application, the

model “error” is considered simply as an additional random variable applied to the

predicted pitching moment as a percentage. Here, model error has a mean of 0 and a

standard deviation of 10%. Thus, the output pitching moment coefficient, Cm =

Cm(pred)*(1+error), where Cm(pred) is the pitching moment predicted from the response

surfaces.
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Table 4: Statistics of Original Variables

Design variables Distribution Mean range COV std dev
Geometry Variables

Model Error Normal 0 0.1
Fuselage finess ratio, fr Normal 6.2796 0.01 0.0628
Wing area ratio, wa Normal 16.1524 0.01 0.1615
Tip fin area ratio, tfa Normal 0.5 0.01 0.005
Body flap area ratio, bfa Normal 0 0.01 0
Ballast wt fraction, bl Normal 0 0.01 0
Mass Ratio, mr Normal 7.75 0.05 0.0167

Control Variables
Scenario 1: Mach 0.3 - Nominal angle of attack
Angle of attack Normal 12 0.1 0.0333
Elevon Deflection Normal -7.7336 1 0.3333
Scenario 2: Mach 0.3 - Minimum angle of attack
Angle of attack Normal 5 0.1 0.0333
Elevon Deflection Normal -1.3109 1 0.3333
Scenario 3: Mach 0.3 - Maximum angle of attack
AOA-Mach 0.3 Max Normal 15 0.1 0.0333
Elevon Deflection Normal -10 1 0.3333
Scenario 4: Mach 2 - Nominal angle of attack
Angle of attack Normal 10 0.25 0.0833
Elevon Deflection Normal -0.3066 1 0.3333
Body flap Normal -0.3481 1 0.3333
Scenario 5: Mach 2 - Minimum angle of attack
Angle of attack Normal 5 0.25 0.0833
Elevon Deflection Normal -5.0628 1 0.3333
Body flap Normal -5.0156 1 0.3333
Scenario 6: Mach 2 - Maximum angle of attack
Angle of attack Normal 15 0.25 0.0833
Elevon Deflection Normal -0.1877 1 0.3333
Body flap Normal 10 1 0.3333
Scenario 7: Mach 10 - Nominal angle of attack
Angle of attack Normal 30 0.25 0.0833
Elevon Deflection Normal 29.8082 1 0.3333
Body flap Normal 6.4322 1 0.3333
Scenario 8: Mach 10 - Minimum angle of attack
Angle of attack Normal 25 0.25 0.0833
Elevon Deflection Normal 20 1 0.3333
Body flap Normal 20 1 0.3333
Scenario 9: Mach 10 - Maximum angle of attack
Angle of attack Normal 40 0.25 0.0833
Elevon Deflection Normal 20 1 0.3333
Body flap Normal 20 1 0.3333
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Table 5: Statistics of Reduced Variables

Design variables Mean Std dev
Geometry Variables

Model ERROR - Xe 0 0.1
FR - X1 (normalized fuselage finess ratio) 0.5198 0.0419
WA - X2 (normalized wing area ratio) 0.2305 0.0323
TFA - X3 (normalized tip fin area ratio) -1 0.004
BFL - X4 (normalized body flap area ratio) -1 0
BL - X5 (normalized ballast weight fraction) -1 0
MR - X6 (normalized mass ratio) -1 0.6667

Control Variables
Scenario 1: Mach 0.3 - Nominal angle of attack
alpha ( derived from angle of attack) –X7 0.9512 0.0159
delev (derived from elevon deflection) – X8 -0.6130 0.0264
Scenario 2: Mach 0.3 - Minimum angle of attack
alpha ( derived from angle of attack) –X7 -2.378 0.0159
delev (derived from elevon deflection) – X8 -0.1039 0.0264
Scenario 3: Mach 0.3 - Maximum angle of attack
alpha ( derived from angle of attack) –X7 2.378 0.0159
delev (derived from elevon deflection) – X8 -0.7927 0.0264
Scenario 4: Mach 2 - Nominal angle of attack
alpha ( derived from angle of attack) –X7 0 0.0396
delev (derived from elevon deflection) – X8 -0.0243 0.0264
Bflap (derived from body flap deflection) – X9 -0.3481 0.3333
Scenario 5: Mach 2 - Minimum angle of attack
alpha ( derived from angle of attack) –X7 -2.378 0.0396
delev (derived from elevon deflection) – X8 -0.4013 0.0264
Bflap (derived from body flap deflection) – X9 -5.0157 0.3333
Scenario 6: Mach 2 - Maximum angle of attack
alpha ( derived from angle of attack) –X7 2.378 0.0396
delev (derived from elevon deflection) – X8 -0.0149 0.0264
Bflap (derived from body flap deflection) – X9 10 0.3333
Scenario 7: Mach 10 - Nominal angle of attack
alpha ( derived from angle of attack) –X7 -0.7927 0.0396
delev (derived from elevon deflection) – X8 2.3476 0.0264
Bflap (derived from body flap deflection) – X9 6.4322 0.3333
Scenario 8: Mach 10 - Minimum angle of attack
alpha ( derived from angle of attack) –X7 -2.378 0.0396
delev (derived from elevon deflection) – X8 0.7927 0.0264
Bflap (derived from body flap deflection) – X9 20 0.3333
Scenario 9: Mach 10 - Maximum angle of attack
alpha ( derived from angle of attack) –X7 2.378 0.0396
delev (derived from elevon deflection) – X8 0.7927 0.0264
Bflap (derived from body flap deflection) – X9 20 0.3333
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Limit States

A limit state defines the boundary between success and failure of the system. In this

problem, each of the 9 scenarios has two limit states, one for the lower bound and one for

the upper bound of Cm (pitching moment coefficient). The lower bound limit state is

glower = 0.01+ Cm, (1)

and the upper bound limit state is

gupper = 0.01 – Cm (2)

The probability of failure is defined as

Pf = P(Cm < -0.01) + P(Cm > 0.01) = P(glower < 0 ) + P(gupper < 0) (3)

The probability of failure for each limit state is the volume integral under the joint

probability density function of all the input variables over the failure region (i.e. where g

< 0) as shown in Figure 2.

Figure 2: Limit State and Probability of Failure
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First Order Reliability Method (FORM)

In this method, the minimum distance from the origin to the limit state is

expressed as )
'*

()
'*

( T
XX= β , where X

'*
is the point of minimum distance from the

origin to the limit state. The minimum distance point on the limit state is referred to as

the most probable point (MPP). X
'

is the vector of reduced normal variables. In this

case, variables are assumed normal, but they can be transformed into equivalent normal

variables for the FORM analysis if a different distribution is appropriate. A linear (first

order) approximation of the volume integral (or failure probability) at the MPP is

computed as )(−Φ β , where Φ is the cumulative distribution function (CDF) for a

standard normal parameter. A graphical representation is shown in Fig. 3.

Figure 3: First-Order Reliability Method

The MPP is found iteratively using the Rackwitz- Fiessler formula (Haldar and

Mahadevan, 2000).
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Here 1
'*

+kX is the MPP at the (k + 1)th iteration, and )( '*
kXg∇ is the gradient vector

(vector of derivatives of the limit state function with respect to each variable.)

The direction cosines (alphas) at the MPP,
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= are a useful by-

product of the FORM method in that they describe the sensitivity of the limit state to each

of the input parameters. The vector, α is the unit gradient of the limit state, g, in standard

normal space, at the most probable point. This information is helpful on several

accounts. Variables with low sensitivities can be approximated as deterministic to reduce

the computational complexity of the problem. Also, reducing the standard deviation of

variables with high sensitivities will achieve the greatest gains in system reliability.

Optimization

As stated earlier, the probabilistic optimization problem is formulated as follows:

Minimize mean weight such that the pitching moment coefficient for all 9 scenarios

has a low probability (less than 0.1) of failing to be within acceptable bounds [-0.01,

+0.01]. Optimization is done in the same manner as before using a gradient based non-

linear optimizer. However, instead of constraining Cm to be between [-0.01, +0.01], the

probability of exceeding the bounds is constrained to be less than some acceptable value.

Also, the means of the input variables are the actual design variables that are altered

during the optimization, and the mean weight is minimized.
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Results and Discussion

Two deterministic and four probabilistic runs are performed and their resulting

optimal dry weight (or mean dry weight) compared with one another. The deterministic

runs were based on factors of safety of 1 and 1.5 and were formulated as follows:

Minimize empty weight (5)

Subject to 5)Table(fromscenarios9to1ifor0.01,
F.S.

01.0 =≤≤− imC

After the optimal design was selected deterministically, a FORM probabilistic

analysis was performed (assuming random variation of the design variables) to determine

the probability that the pitching moment was with the standard bounds, [-0.01, 0.01].

The probabilistic runs were based on acceptable probabilities of failure of 5%, 10%, 15%,

and 20%. In this case, the following formulation was used:

Minimize mean empty weight (6)

Subject to fP0.01)01.0( ≤≤≤−
imCP

Fig. 4 is a graphical comparison of the optimal weight for each analysis. The first

deterministic run uses a factor of safety of 1 so that Cm was simply constrained to [-.01,

+0.01] as stated in the original deterministic formulation. As would be expected, this

method yields the lowest optimal weight. However, such a solution corresponds to a

50% probability that the pitching moment actually fails to be within these bounds. A

post-optimization FORM analysis proves this but it is also evident by inspection. In

effect, the deterministic optimization drives the mean of Cm to the boundary.



27

209

210

211

212

213

214

215

0.5 0.2 0.15 0.1 0.0975 0.05
Probability of Failure

[M
ea

n]
E

m
pt

y
W

ei
gh

t(
ki

ps
)

F.S. = 1

F.S. = 1.5

Figure 4: Weight Optimization Results

The second deterministic optimization with a factor of safety of 1.5 in effect

reduces the pitching moment constraint to [-0.667, +0.667]. A post optimization

probabilistic analysis shows that this method gives a 9.75% probability that the true Cm

fails to be within the original bounds, [-0.01, 0.01]. The probabilistic optimization results

show, as expected, that the optimal mean weight is inversely proportional to the required

failure probability.

It is interesting to note that the 1.5 factor of safety compares closely with the

10% failure probability (Pf) case in both probability of failure (9.75% for the 1.5 FS vs.

10% Pf) and optimal mean empty weight (213.7 kips vs. 213.3 kips). Although the 1.5

FS approach and the 10% Pf approach both give similar designs, the disadvantage of the

factor of safety approach is that it does not quantify the failure probability. Such

information is gained only from probabilistic analysis. If we want to improve the

probability of satisfying our original constraint by a specific amount, we cannot know

beforehand what new factor of safety to use. Probabilistic optimization, though it

requires more computation than deterministic optimization, is not difficult for simple
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closed form analyses that use response surfaces. It enables the designer to consider input

variability and in essence, directly ‘design for’ a reliability requirement.

A second graph, Fig. 5 shows the probabilistic sensitivity indices of the various

input variables for three of the nine scenarios: the maximum angle of attack scenarios at

each of the three speeds (scenarios 3, 6 and 9 from Table 4). The sensitivity indices are

the direction cosines, from the probabilistic analysis
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σ

σ
α , discussed

in a previous section. They are directly related to the derivatives of the pitching moment

failure probability with respect to the input random variables, normalized so that the sum

of the squares is one. Note that the probabilistic sensitivity indices combine physical

sensitivities (derivatives of the liit state with respect to the design random variables) as

well as the scatter (through the
ixσ term) of the random variables. Such information is

only available through probabilistic analysis. In addition, the probabilistic sensitivity

indices give direct indication for the design improvement and optimization. These

indices have been used to derive reliability-based design safety factors (Ang and Tang,

1984). Also, these indices help to identify the important variables affecting the system

failure probability, and therefore facilitate decisions with respect to resource allocation

for datat collection, improved modeling, etc. On the other hand, variables with low

sensitivity indices may be treated as deterministic, thus reduction the computation effort.
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Figure 5: Variable Sensitivities to Pitching Moment

It is seen from Fig. 5 that the assumed model error has a significant effect for all

scenarios but that the driving effect is mass ratio for the supersonic and hypersonic

scenarios and elevon deflection for the subsonic scenario. Similar results are given for

other scenarios with the same speeds. (For example, all three subsonic scenarios have

high pitching moment sensitivity with respect to elevon deflection.)

Conclusions

This chapter has presented and applied a methodology for probabilistic

multidisciplinary optimization. The application demonstrated involves codes from three

disciplines and considers nine limit states all related to the pitching moment (Cm)

constraint. The combination of response surfaces and first order reliability analysis

provides a valuable tool for system conceptual design. This methodology can be

achieved for any defined limit state and could be expanded to incorporate additional

probabilistic constraints for more complex problems (e.g. for lift and drag failure in this
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problem). Unlike simulation methods, FORM converges quickly even for very low

probabilities of failure and is very conducive to optimization.

It is important to note that this is only the first step of the conceptual design. As

design progresses, additional detail at the component level is required and higher fidelity

analyses are needed for accuracy. The next chapter addresses a strategy for stepping

down from a global design to a component level design (i.e. a liquid hydrogen tank).

Chapter V deals with the additional complexity of higher fidelity multidisciplinary

analysis.

As more disciplines are integrated into the conceptual design process, several

different types of constraints may need to be included. Some of the limit states

corresponding to these constraints may have a sequential relationship and may be linked

through a probabilistic event tree in a system level analysis. This is the case for the liquid

hydrogen tank design presented in the next chapter, where system failure may occur

through a number of distinct failure modes.
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CHAPTER III

LIQUID HYDROGEN TANK DESIGN

In the previous chapter, probabilistic methods were demonstrated for the

geometry optimization of a reusable launch vehicle. This application was an example of

an inter-disciplinary system-level design in that it considered a coupled analysis of

geometry, weights, and aerodynamic disciplines. It was also a system-level design in

terms of physical architecture, in that the geometry design variables define the global

characteristics (length, radius, wing areas, etc.) of a vehicle comprised of many

component parts (wings, fuel tanks, engines, etc.). At the same time, the probabilistic

methodology applied was component-level reliability analysis since individual event

probabilities (excessive pitching moment) were used as failure constraints. The work

presented in this chapter expands on the global RLV design by considering the design for

an individual fuel tank. This is a single disciplinary analysis, of a single physical

element, analyzed in terms of multiple limit states.

Background

Global-Local Coupling in RLV System Design

Large engineering systems are too complex to study on a single level, so they

must be decomposed for meaningful analysis and design. However, the system is not

merely a collection of unrelated parts; the components of a system are coupled to one
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another in a unique way as defined by the system architecture. Thus, a design process

must be able to evaluate a system at the level of individual component performance and

also at the level of the coupled system. To do this, engineers must manage both system

decomposition as well as system re-integration. Typically, a system hierarchy is needed

to do this.

In the design of complex systems, system hierarchy exists in several, related

forms. For example, one form relates to the physical architecture of the system. Here

the ‘system-level’ refers to the global physical design. This is contrasted with the

‘component-level’, which may include physical elements of the design (such as

individual tanks, engines, etc.). Another hierarchy is along the lines of disciplinary

analyses. Here, the ‘system’ is the integrated analysis involving several coupled

disciplines (such as weights, aerodynamics, etc.). System level designs must be

compatible across the individual ‘components’ or disciplinary analyses. Finally, the

‘system’ can refer to the sequence of events leading to a ‘system failure.’ In this sense,

the individual ‘components’ are the single events in the failure sequence. Each event is

defined by individual limit states. Mathematically, the system failure is represented by a

series of unions and/or intersections of multiple limit states. These three forms of

system architecture (disciplinary, physical, and failure) are depicted in Fig. 1 (a-c).

The engineering design process, if it is to result in an efficient system design, will

be iterative in nature. Consider that a hierarchical top-down approach begins with a

system-level or global design that is then broken into sub-systems, components, sub-

components, etc. As designs are optimized for a given component, both the inputs and

outputs are affected. These changes may affect coupled components on the same level as
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well as the upstream (higher order) and downstream (lower order) levels (Buede, 2000).

Iteration is required to obtain true system-level optimality as well as inter-level

compatibility.

Body Fuel tanks Wing Engines

RLV

Figure 1(a) Physical Architecture

Geometry Weights Aerodynamics

Coupled
Multi-disciplinary

analysis

Figure 1(b) Disciplinary Architecture

�

Figure 1(c) Failure Architecture
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A launch vehicle is comprised of many components (Fig. 2). Each component

must be designed to successfully perform its individual function, but must also integrate

or ‘fit’ into the system as a whole. The subject of this chapter is a liquid hydrogen (LH2)

fuel tank. Design parameters include the shape, dimensions, and location of the tank as

well as the material make-up of the tank walls. The primary operational requirement for

the tank is that it must be large enough to hold the fuel necessary to complete the mission

of the vehicle. At the same time, the tank must not occupy the same space as other

components and must be strong enough to resist loading induced by the entire vehicle.

The global system design drives both the fuel requirements (a function of the shape and

weight of the vehicle) and the induced loading (a function of the weight distribution of

the vehicle).

Of the three elements of tank design (location, shape, and wall material), this

analysis focuses on the tank wall material. Trade studies have been conducted addressing

optimal shapes and positioning for fuel tanks in the X-33 lifting body configuration

(Dorsey, et al, 1999). However, stability considerations for the more basic slender body

concept dictate that the two fuel tanks (liquid oxygen and LH2), which comprise the bulk

of the weight of the loaded vehicle, be at either end of the launch vehicle. In addition, the

slender body vehicle concept lends itself to cylindrical tank geometry so that only the

tank’s length and radius are needed. Furthermore, the volume is obviously dictated by

fuel requirements, and the tank radius is limited by the RLV geometry, both of which are

products of the global design. For the scope of the following analysis, the LH2 tank is

assumed to be a typical cylindrical tank with given end eccentricity, located at a fixed

distance from the end of the vehicle. With tank geometry and location driven by
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requirements, the final considerations for design are the material and structure of the tank

walls. In this respect, the tank should be sized such that it is as light as possible but

strong enough to resist stresses induced by inertial loads.

Figure 2: RLV Components

Structural Sizing Overview

Limit States

The goal of structural design in general can be described as achieving a structural

capacity (through design) that is greater than the anticipated loading. This criterion is

described by the basic performance function, g = R – S, where R is component capacity

(or resistance) and S is the component load. The condition g = 0 is referred to as limit

state. An alternate performance function is 1-
S

R
g = . In either case, when g < 0, the

component is presumed to fail. Physics-based mathematical models predict R and S, and

usually there are several modes of failure that must be considered. For example, under

uniaxial loading the yield stress of material yσ is the resistance and the applied stress σ
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is the load, so that the failure limit state becomes: yσσ = . For multiaxial loading, the

Tresca and Von Mises failure theories are competing models for failure of ductile

materials. The Von Mises failure criterion for plane stress,

[σ1
2-σ1σ2+σ2

2] ≤ σy
2 or (1)

may be written in limit state form:

g = σy
2 – [σ1

2-σ1σ2+σ2
2] ≤ 0 or (2)

g = σy – [σ1
2-σ1σ2+σ2

2]1/2 ≤ 0 (3)

Here, the component capacity, R, is represented by the yield stress, σy, and the equivalent

Von Mises stress, [σ1
2-σ1σ2+σ2

2]1/2 represents component loading, S (Popov, 1976).

Additional failure modes come into play when composite materials or various

panel concepts (Fig. 3) are used for the tank wall structure. Examples include material

strength, panel biaxial buckling, beam-column buckling, local buckling of flanges and

webs, crippling of cross section, deformation, model frequency, etc. Structural sizing

software such as the commercially available Hypersizer™, is useful for this assessment.

Hypersizer™ computes limit states in the form of a margin of safety (M.S.) for a variety

of failure mode, where 1-
loadfailureallowable

loadfailureultimate
.. =SM (Collier, et al, 1999; Allen and

Haisler, 1985).
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Figure 3: Panel Concepts

Accounting for Uncertainty

The limit states described above are model-based predictions of true performance,

and they are associated with many uncertainties. Uncertainty exists for the material

properties (which determine the system resistance) and the system loading. The limit

states themselves also have inherent model uncertainty. For example, the Von Mises

criterion is an approximate model of material failure under combined loading.

In traditional design, factors of safety are used to ‘over design’ the component in

an attempt to accommodate these uncertainties (Lindberg, 1992). For example, in

allowable stress design (ASD) for steel, actuala σ
σ

σ
F.S.

y ≥= , where aσ is the allowable

stress, yσ is the yield stress, and F.S. is the factor of safety (typically 1.5 to 2.5). The

load and resistance factor design method (LRFD) is gaining widespread acceptance over

ASD methods, but it is also essentially a factor of safety approach. In LRFD, a capacity

reduction factor, φ , is used to adjust the acceptable resistance (e.g.
φ

uM
M n ≥ , where

nM is the nominal moment strength and uM is the ultimate or required strength), and load
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factors are applied to design loads (e.g. loadliveloaddead 1.71.4 MMM u += ). Both the

ASD and LRFD approaches acknowledge that there is uncertainty in either the system

loading (S), the system capacity (R), or both. Furthermore, LRFD associates varying

degrees of uncertainty for different types of loading by using different load factors (for

example, live loads are assumed to have a higher uncertainty than dead loads and so have

a higher load factor). The appropriate factors have been codified for materials such as

concrete and steel based on years of design experience with conventional structures

giving a measure of system reliability that is implicitly understood by those in the

industry. However, modern aerospace systems are forging new ground with respect to

materials and operational environments. With these novel systems, there is no translation

between factors of safety and reliability. Instead, program sponsors are likely to prefer

reliability information in terms of the probabilities of failure.

The probability of failure gives a much clearer picture of system reliability. For

one, it defines reliability in a way that is consistent regardless of design complexity,

materials used, or loading environment. Another advantage is that the failure probability

measure can be translated to failure costs. Unfortunately, failure probabilities are more

difficult to assess than deterministic factors of safety. At the level of major components

such as the LH2 tank, it is not reasonable to perform the number of physical tests

necessary to determine the tank’s structural reliability experimentally. However, as with

the RLV conceptual design, probabilistic methods may be used to assess the reliability

based on uncertainty quantifications for the system resistance (i.e. material properties),

system loading, and the physical model (system analysis followed by failure criterion

evaluation).
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There are multiple modes of failure for the RLV tank (i.e. Von Mises interaction

failure, isotropic failure, panel buckling), multiple locations along the tank that could fail,

and even multiple load cases (at various stages in the RLV’s trajectory) that could cause

failure. Each of these failure cases may be represented by a corresponding limit state.

However, the overall reliability measure for the tank is the system failure probability,

which synthesizes all of these modes. Since any single failure mode results in failure of

the tank, a union operation mathematically represents system failure. There are several

methods for approximating the probability of unions for dependent events. These include

methods developed by Ditlevesen (1979), Hohenbichler and Rackwitz (1983), Gollwitzer

and Rackwitz (1988), Madsen et al (1986), and Xiao and Mahadevan (1994).

Probabilistic Design of LH2 Tank

Problem Definition

The design goal for the RLV tank is to minimize the weight of the tank while

meeting the requirements for fuel capacity and structural integrity. The fuel capacity

requirement is maintained by choosing the appropriate tank geometry. With tank

geometry dictated by the global design, an optimization problem may be formulated to

select the best design for the tank wall structure:

Minimize Tank Weight = f(R) (4)

Subject to

0<− SR or 01- ≤
S

R
{for all failure modes}
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where R is the tank resistance and S is the loading on the tank. The problem is re-

formulated to consider uncertainties in R and S:

Minimize ( ) )(f)(fttank weigh RR Rf µµ ≈= (5)

Subject to

required
modesfailureall

PSRP <







−U

This optimization formulation recognizes that the objective (tank weight) and constraints

(failure limit states) are random variables. For well-defined optimization, objectives and

constraints need to be selected from among the parameters that characterize the random

distributions of these variables. In this case, the parameter mean tank weight is selected

as the objective, and the probability of system failure is chosen as the constraint.

For isotropic panel concepts (such as a simple thin-walled tank), tank weight and

resistance are perfectly correlated so that the design variable, Rµ , may replace the

objective function. In this case, the reliability constraint is active and the designer may

simply solve for Rµ to satisfy required
modesfailureall

PSRP =







−U .

Evaluating
modesfailureall









−U SRP involves five subtasks: (1) defining an analytical

model for the system loading, S, based on information from the global analysis and the

mission profile, (2) defining analytical models for various failure modes that

incorporates the loading model and resistance, R, in terms of design variables (3)

quantifying the uncertainty of inputs to the failure model, (4) using probabilistic methods

to evaluate the failure probability of the individual limit states, and (5) using system

probability methods to estimate the union of several limit states.
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Calculating System Loads

Running load calculations are based on the methodology used in the C program,

RL by Cerro (1996). (The running load is the applied stress times the thickness.) They

are based on a simple beam model as depicted in Fig. 4. The model accounts for

component weights as uniform distributed loads under axial and normal accelerations. In

addition, fuel tanks experience ullage and head pressures. Reaction point locations (R1

and R2) represent lift, drag, wheel reactions, and/or the launching structure reactions

depending on the mission stage (i.e. lift-off, ascent, landing, etc.). The calculations were

programmed in Matlab (Mathworks, 2002) in order to simplify links with existing

probabilistic analysis programs and optimization algorithms. They are summarized

below:

Figure 4: Simple Beam Model for RLV Loading

1. Ullage pressure:

2

radius*pressureullage
(ullage) =xN , (6)

radius*pressureullage(ullage) =yN (7)

where the LH2 ullage pressure is equal to 25 psi.
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2. Head pressure:

radius*pressurehead(head)

,
2

radius*pressurehead
(head)

=

=

y

x

N

N
(8)

where,

fuel/100;percent*location)starttank-interestof(locationhead

andon,acceleratiaxial*densityfluid*(inches)headpressurehead

=

=
(9)

and the fluid density for LH2 is 4.421 lb/in3.

3. Axial force:

radius**2
(axial)

π
F

N x = (10)

where F is the axial force calculated as

F= Σwi * axial acceleration (11)

for all distributed weights, wi up to the location of interest. Fuel weights are only

added if the location is beyond the end of the tank.

4. Bending:

radius
(bending)

I

M*
N x = where (12)

I is the moment of inertia. M is the moment calculated based on shear and

moment diagrams from simple beam theory for a set of uniformly distributed

loads, wi, applied at given beginning and end locations:

,)-()( 2

,

2

bi, i

ii
exi

ii
ex

i bewbxwwdxM
ii

∑∑∫ ∫
><<

+−≅= and (13)

I = π * radius3
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5. Shear:

radius)(
(shear)

*

V
N xy π

= (14)

where V is the shear calculated from the simple beam theory:

),-()(
,bi, i

ii
exi

ii
ex

i bewbxwwdxV
ii

∑∑
><<

+−≅∫= where ei and bi are the (15)

locations of the ending and beginning locations of the uniform distributed load.

Total running loads are found by adding the contributions from ullage, head,

axial, bending and shear so that:

Nx = Nx(ullage) + Nx(head) + Nx(axial) + Nx(bending) (16)

Ny = Ny(ullage) + Ny(head) (17)

Nxy = Nxy(shear) {only applies at side locations} (18)

The simple beam model is a low fidelity analysis. It is useful for conceptual

component design and updating the weight distribution of the global vehicle. However,

higher fidelity models (based finite element analysis) would be needed to better predict

component loads as design progresses to the next level.

System Resistance and Failure Limit States

There are multiple failure criteria (e.g. strength, panel buckling, etc.) that may be

used to predict structural failure, and infinite locations on the component that may fail.

Each of these cases is associated with a failure limit state. In addition, since loading
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varies with the flight profile, there are an infinite number of failure limit states associated

with flight conditions. System failure occurs if any part of the tank fails at any time

during the mission based on any of the failure modes. Thus system failure may be

modeled as a series or union of an infinite number of limit states. Obviously, only a

finite number of failure limit states can be analyzed; this can be achieved by dividing the

continuous spaces (e.g. tank location, flight profile) into finite regions. This concept is

demonstrated in the following section through two models of system failure. The first

model assumes a uniform, thin-walled tank and synthesizes failure at three different

locations according to a single criterion, Von Mises failure. The second model assumes a

segmented tank, and synthesizes three failure modes (i.e. failure according to three

different criteria). In both models, three limit states are chosen for the sake of

demonstration. Additional limit states would need to be considered in practice, adding

computational expense without changing the basic methodology.

Von Mises failure of uniform, thin-walled tank at three locations: In an initial approach,

the failure performance function (g = R - S) is determined by the Von Mises criterion.

For thin, isotropic tank walls, the resistance is determined by the yield stress of the

isotropic material and the thickness. In addition, stresses may be assumed to be uniform

through the thickness for the thin-walled tank. Thus, it is useful to consolidate both the

yield stress and thickness into a single design variable called the yield load (Nyield = σy *

thickness). Using running loads in lieu of stresses, the Von Mises criterion may be

written in the following form:
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( ) ( )
0

2

6 2222

yield ≤
+++−

− xyyxyx NNNNN
N (19)

The running loads on a tank vary according to location (both axially and radially)

as shown in Fig. 5. In addition, the loading on the tank varies according to flight

conditions (e.g. different acceleration conditions and fuel volume). System failure is

defined as failure at any location during any anticipated set of flight conditions. This

analysis assumes a uniform, thin wall for the tank so that its geometry and material

properties (and thus the limit load, Nyield) do not vary according to location. Here only

one set of flight conditions is considered at three radial locations (0º, 90º, 180º) at a single

axial location.

Figure 5: Three Axial Locations Analyzed for Failure

Multiple failure mode analysis of segmented, honeycomb tank panels: Since weight is of

paramount importance, an isotropic, thin-walled tank is not the ideal design. Instead

more complex concepts such as honeycomb sandwiches and blade-stiffened panels are

more appropriate. In addition, an efficient wall design would have varying resistance

properties according to the loading profile. This requires a more sophisticated approach

for estimating tank resistance properties and analyzing failure modes. The material
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management and structural sizing software, Hypersizer™, is useful for this purpose

(Collier, et al, 1999).

In this approach, the tank is divided into 10 sections along the length, and 4

sections along the circumference. Since the maximum load varies from panel to panel,

they need not be identically designed. (However, the left and right side panels will be

identical, requiring the design of 30 individual panels.) Loading on the panels is

obtained from the simple beam model as before. In the analysis that follows, the side

panel located close to the rear of the RLV is designed. Hypersizer™ includes a database

of properties for a number of isotropic and composite materials, and it is able to consider

several panel concepts. This demonstration utilizes a honeycomb sandwich concept

consisting of top and bottom plates of Aluminum, AL2024 and Hexcell 1/8”-5052-.0015

for the sandwich material.

Design of the panels must specify the thickness of the plates and sandwich.

Given the panel properties and applied loads, Hypersizer™ then evaluates the margins of

safety for a number of failure criteria. For the tank walls, the significant failure modes

are: isotropic strength in the transverse direction, Von Mises strength, and honeycomb

buckling.

To facilitate probabilistic optimization, response surfaces for three failure modes

(Von Mises, isotropic strength, and honeycomb buckling) were developed from a design

of Hypersizer™ experiments. Equations for Von Mises and isotropic strength failure are

known, so that the Hypersizer™ analysis is only needed to verify the effective yield

stress for the panel material. They are given by Eqs. (3.20) and (3.21) respectively:
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t*84000 plate −=

y
Iso

N
g (21)

A Box-Behnken design of experiments (Myers and Montgomery, 1995) was used

to generate the 2nd order polynomial response surfaces for buckling of the honeycomb

material. Based on the expected range of load variables (Nx, Ny, and Nxy), only the shear

loading (Nxy), the plate thickness (tplate) and honeycomb thickness (thc) affect the panel

buckling failure margin. In addition, since failure is known to be inversely proportional

to the applied loading, the polynomial response surfaces were based on (1/Nxy) and

(1/Nxy)
2 as well as tplate/hc and t2

plate/hc. The response surface is given in Eq. 22.

(22)

323121
2
3

2
2

2
1321 11.106.378.007.11.077.216.986.96.847. xxxxxxxxxxxxg HCB −−++++−++=

where )003.
1

6000(-and),1.20(),075.4( 3hc2plate1 +=−=−=
xyN

xtxtx

Variable Uncertainty

As seen in the structural analysis, the system loading is a function of several

variables. The system resistance variable(s) constitute the design variable(s). For the

thin-walled tank, this is reduced to a single parameter, Nyield. For the segmented tank, the

honeycomb thickness (thc) is an additional resistance variable, and plate thickness is the

design variable. All of these have a degree of uncertainty that affect the uncertainty of

the calculated running loads. However, variables with an insignificant affect on the
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output variability are assumed to be deterministic (i.e. constant). The variables are

summarized in Table 1 below:

Table 1: Input Variables

Parameter Distribution Origin Mean Cov Description

x1 R1 Lognormal mission 350 0.1 Location of first reaction point
x2 R2 normal mission 2000 0.1 Location of second reaction point
x3 %_fuel normal mission 0.9 0.1 Percent of fuel remaining in tank
x4 ax normal mission 1 0.1 axial acceleration
x5 ay normal mission 1 0.1 normal acceleration
x6 mixratio normal mission 0.2 0.1 ratio of lox weight to lh2 weight
x7 radius normal global 377.4 0.0035 RLV & tank radius
x8 fuel wt normal global 2020000 0.0095 total fuel weight (lh2 and lox)
x9 N yield normal local design var 0.1 yield load of tank structure

t plate normal local design var 0.1 top and bottom plate thickness
t hc normal local 0.1 0.1 honeycomb sandwich thickness

c1 oal deterministic global 2340 overall length
c2 wstruct deterministic global 109800 distributed load along entire RLV
c3 wwing deterministic global 21950 distributed load along wing
c4 wengine deterministic global 87810 distributed load along engine

Variables for Structural Tank Design

The first 6 variables in Table 1 are determined by the mission profile for the

launch vehicle. They will vary along the flight trajectory. The global variables are

obtained from a Monte Carlo analysis of the RLV global design response surfaces as

summarized below:

x7: Radius = Fuselage Fineness Ratio * oal (23)

Fuselage fineness (fr) is an optimization variable for the global design. Response

surfaces for overall length (c1: oal) were available from the weights design of

experiments discussed in the last chapter.

x8: Fuel Weight = Gross lift-off weight – empty weight – cargo weight (24)

Response surfaces for gross lift-off weight and empty weight come from the

weights design of experiments. The cargo weight is 25,000 lb as given by mission
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requirements. Unfortunately, the response surfaces do not give enough detail on

component weights to develop the weight distribution needed for the tank structural

analysis. Instead, the parametric estimates below were based on the weight distributions

for the structure, wing, and engine of legacy vehicles. As components are designed in

detail, this information may be updated to refine the structural analysis.

c2: Wstructure = 0.5 * empty weight (25)

c3: Wwing = 0.1 * empty weight

c4: Wengine= 0.4* empty weight

Single Limit State Analysis - First Order Reliability Method

For the uniform thin-walled tank analysis, the limit state for tank failure at a

single location is given by Eq. 19, which is a function of random input variables.

Variability in the input parameters described above will result in some variability in the

response, g. This variability in the response gives a probability of component failure,

Pf = P(g < 0). There are many methods for estimating the variability in response

functions of input parameters with known variability. Here the first order reliability

method (FORM) is chosen since it is a computationally inexpensive method effective for

responses with low failure probabilities. FORM was discussed in detail in the previous

chapter.

For the segmented, honeycomb panel tank, a two part probabilistic analysis is

used. First, ten thousand Monte Carlo runs were performed (by varying the input

variables from Table 1) on the loading analysis (Eqs. 6-18) to find the mean and standard

deviations of the loads (Nx, Ny, and Nxy). The results are shown in Table 2. (Panel #’s
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refer to longitudinal location. The qualifiers ‘top,’ ‘side,’ and ‘bottom’ refer to the

circumferential location. Ny is the same for all circumferential locations. Nxy is zero for

top and bottom panels. The #10 side panel is the subject of the design discussed herein.)

The Kolmogorov-Smirnov test was conducted to assess conformity to a normal

distribution type (Haldar and Mahadevan, 2000). All panel loads followed a normal

distribution within a 10% significance level, and most were within 5% significance.

FORM was then performed on the response surfaces of select panels considering Nx, Ny,

and Nxy as random variables. The plate thickness and honeycomb thickness were also

considered as random design variables. The advantage to this two-step approach is that it

reduces the number of random variables. Although explicit gradients could be found for

the response surfaces they would not be available for the true Hypersizer failure mode

analysis; in this case, an additional finite difference run would be required for each

random variable in order to use the Rackwitz-Fiessler algorithm for FORM.Table 2:

Table 2: Results of Monte Carlo Analysis of Loads

Panel # 1 2 3 4 5 6 7 8 9 10
Mean Values

Nx(top) -662 -734 -746 -699 -593 -437 -218 73 436 871
Nx(side) 562 512 461 411 360 297 226 155 84 13

Nx(bottom) 1787 1758 1669 1521 1313 1031 670 237 -268 -845
Ny 4751 4751 4751 4751 4751 4751 4751 4751 4751 4751

Nxy(side) 64 -11 -86 -161 -236 -321 -411 -502 -593 -684
Standard Deviations

Nx(top) 91 99 105 108 110 110 110 108 105 103
Nx(side) 52 52 53 54 55 54 56 57 59 60

Nx(bottom) 46 51 56 61 67 72 79 87 97 111
Ny 48 48 48 48 48 48 48 48 48 48

Nxy(side) 11 10 9 9 9 9 9 9 10 11
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Synthesizing Multiple Limit States for System Failure Estimation

In the uniform tank analysis, three failure locations are considered: top, side, and

bottom (or 0º, 90º, 180º as in figure 5). Since system failure is defined when the tank fails

at any one location, system failure is defined as a union of these three events:

{ })0()0()0( <<<= bottomgsidegtopgPfsP UU . (26)

or equivalently,

{ })0()0()0(1 <<<−= bottomgsidegtopgPfsP UU (27)

where )(EnotE ≡ .

Then, from DeMorgan’s Rule,

{ })0()0()0(1 <<<−= bottomgsidegtopgPfsP II (28)

or

{ })0()0()0(1 >>>−= bottomsidetopfs gggPP II (29)

where ≡I intersection.

For the segmented, honeycomb panel analysis, three failure modes (of the #10

side panel) are considered for demonstration. They are honeycomb buckling, strength

failure (Von Mises), and the transverse isotropic strength.

There are several methods of approximating the intersection of several events. In

this case, the Hohenbichler approximation (Hohenbichler and Rackwitz, 1983) is used.

This method uses the reliability indices, β, from the individual limit states and a

correlation matrix, ρ. The correlation matrix is defined as: jiij ααρ •= , where
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ji αα and are teg direction cosine vectors such that
ig
ig

∇
∇

=iα . The Hohenbichler

methodology will not be explained in detail here. However, the basic premise is to use an

orthogonalization procedure to transform a set of limit states to a set of statistically

independent limit states. Then, the probability of failure calculation is simply:

,)(*)(*)(** *
3

*
1

*
3

*
1 22

βββ ΦΦΦ≈= fffs PPPP
f

(30)

where *
3

*
2 and ββ are the reliability indices for the transformed (i.e. statistically

independent) limit states.

Results

The problem statement may now be refined as stated below:

Minimize
yNµ (31)

Subject to

{ } acceptablefs PgggPP ≤<<<= )0()0()0( 321 UU

(for Von Mises failure of uniform, thin-walled tank at three location)

where ( ) ( )
2

6
-

2222

iY
ixyiyixiyix

i

NNNNN
Ng

+++−
= or

Minimize
platetµ

Subject to

{ } acceptableHCBIsoVMfs PgggPP ≤<<<= )0()0()0( UU

(for 3-mode failure of segmented honeycomb panel, #10 side)
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The optimization was performed for the thin-walled tank analysis using several

different values for Pacceptable using a bisection method. The results are depicted

graphically in figure 6. (As a point of reference, a tank constructed from 60 ksi steel

with a wall thickness of 0.25 inches has a yield load of 15,000 lb.) A margin of safety

was also calculated for each of the three limit states. The margin of safety and the

probability of failure for the side location are given in figure 7. The margin of safety is

inversely proportional to the probability of failure, as one would expect.

Similarly, the optimization was performed for the segmented honeycomb tank.

The optimal plate thickness is plotted against the acceptable system failure probabilities

in Figure 8. In addition, the relative contribution of each of the limit states is depicted in

Figure 9. It can be seen from this graph that the strength (Von Mises) and isotropic

failure modes dominate the design requirements for this panel.

Probability-based Design Yield Load
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Failure Probability vs. Margin of Safety
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Probability of Failure for Individual Limit States

0.00E+00

2.00E-04

4.00E-04

6.00E-04

8.00E-04

0.001 0.0008 0.0005 0.0002 0.0001 5E-05

System Failure Probability

Figure 9: Probability of Failure for Individual Limit States

Conclusions

This application demonstrates the flow of probabilistic design information from a

global, low-fidelity multi-disciplinary analysis to a higher fidelity, local, single discipline

analysis. Geometric variables (fuselage fineness, overall length), established through the

global design in the previous chapter, established the tank radius (Eq. 23). In addition,

the vehicle empty weight and gross lift-off weights, outputs from the global weight

optimization, were used to determine the vehicle loading distribution (Eqs. 24 and 25) for

the local tank sizing analysis.

The application described is limited in that it only depicts a first iteration of

coupling in a single direction. In other words, the local analysis of the RLV tank refines

or updates the information on the global vehicle. This new information needs to be re-

analyzed in the context of the global multidisciplinary design, which in turn updates

information at the local level. This process of passing information between global and
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local levels continues until acceptable convergence is reached. For the RLV design,

global weight estimates from the low-fidelity global analysis are replaced by detailed

component information after they are designed for structural reliability. This affects

other disciplines such as aerodynamics and propulsion at the global level. These coupled

disciplines affect the fuel requirements and the vehicle loading, and thus the local

structural analysis must also be updated.

In addition to the global to local coupling, this application demonstrates a

probabilistic optimization formulation for system failure of multiple limit states. For an

RLV fuel tank, structural failure is subject to many possible failure modes, several

locations, and a load history that varies according to the stage of flight. In this analysis,

only three modes are considered for demonstration. In reality, an infinite number of

failure limit states are applicable. One practical approach to solving such a problem is to

increment the continuous fields for which failure modes apply. Then, a technique such as

branch and bound may be appropriate to identify the failure modes of most significance

before system reliability methods are to be applied.

The analysis presented in this chapter, like that in the previous chapter is of fairly

low fidelity. These computationally efficient models are effective for probabilistic

analysis and optimization where several iterations are necessary. However, as more

design detail is required, higher fidelity models are needed. In this case, the simple beam

load model and Hypersizer response surfaces will not be adequate. In the Chapter V,

integration issues arising from higher fidelity analyses in multidisciplinary systems are

addressed through a hypersonic missile application.
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�CHAPTER IV

COUPLED SYSTEMS

In the second chapter, probabilistic optimization was performed for the

conceptual design of a reusable launch vehicle. The individual disciplinary analyses

were integrated through response surfaces, which enabled efficient probabilistic analysis

and optimization. However, the response surface approach does not have the precision

needed for design beyond the earliest conceptual stage, when additional detail is required.

The third chapter explored a single-discipline analysis of a component, and demonstrated

the information flow from a low fidelity global model to a higher fidelity local analysis,

but did not address the re-integration of the higher fidelity design at the system level. To

complete system design, a multidisciplinary framework must allow coordination or re-

integration of the disciplinary efforts. It is within this framework that probabilistic

analysis and optimization tools must be applied in order to achieve improvements and

meet design goals for cost and risk. Unfortunately, multidisciplinary integration can be

complex and computationally intensive, a problem that is exacerbated when iterative

probabilistic analysis and optimization tools are applied.

One challenge that surfaces for integrated multidisciplinary systems involves

feedback coupling. In this case, iterative convergence loops are needed to resolve

inconsistencies in feedback state variables. In a traditional ‘black box’ or fully coupled

approach, any multidisciplinary analysis (MDA) convergence loops are nested inside

loops for probabilistic analysis and/or optimization. The resulting computational effort
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is unacceptable for most higher fidelity analyses. This chapter explores various

alternatives to the “black box” approach for applying probabilistic analysis to

multidisciplinary systems with feedback. These techniques are applied to a simple

mathematical model and compared to one another with respect to accuracy and

computational effort.

The Nature of Probabilistic Multidisciplinary Optimization

Multidisciplinary Analysis

Multi-disciplinary analysis (MDA) involves integrating individual (or discipline

specific) analyses, which are coupled to one another through shared input and output

data. This coupling is represented by state variables, which are variables derived as

output from one discipline but required as input to other disciplines. MDA is

characterized by a compatibility requirement; in other words, state variables must be

consistent across all disciplines.

For analyses performed in a particular sequence, interdisciplinary coupling may

be either a feed-forward or feedback type. For feed-forward coupling, the output of an

earlier analysis feeds ‘forward’ as the input of a later analysis. Alternately, feedback

occurs when a coupled analysis must be performed prior to the analysis that determines

its input. Convergence loops are required to resolve feedback, requiring multiple ‘runs’

of a single set of analyses. Intelligent sequencing may minimize feedback coupling, but

may not be able to eliminate it entirely (Browning, 2001). Even strictly feed-forward
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MDA systems can be computationally expensive since performing analyses in sequence

prevents the timesaving approach of parallel computing.

Figure 1: Feedback Coupling of a Two-Discipline System

Figure 1 depicts coupling in a two-discipline system. Here x1 and x2 represent

local input variables to analyses 1 and 2 respectively, while xs indicates input variables

common to multiple analyses. Variables u1,2 and u2,1 are the state variables (such that ui,j

is an output of analysis i and an input to analysis j). The system output variables are f, g1,

and g2; in the context of optimization, f may represent a system objective and g may

represent system constraints. It may be seen that, regardless of which analysis is

performed first, an unknown input state variable (either u1,2 or u2,1) is needed. Systems

with feedback coupling are typically solved with fixed-point iteration. In other words,

assumed values for the unknown state variables are initially used; then they are updated
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by performing the analyses from which they are derived; the analyses are performed

again with the updated values; this process continues until convergence is reached.

Using fixed-point iteration within probabilistic optimization algorithms is not

usually an ideal approach. For one, the computational effort of a single set of the

disciplinary analyses is multiplied by the number of fixed-point iterations, then by the

number of probabilistic analysis loops, and finally by the number of optimization loops.

This effect is depicted in Figure 2.

Figure 2: Probabilistic Optimization for Systems with Feedback

Another difficulty is in obtaining gradient information, usually required for the

more efficient probabilistic analysis and optimization algorithms. If a finite difference

method were used, the convergence process would need to be repeated for each variable.
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Furthermore, one might select a less stringent convergence criterion to avoid unnecessary

fixed-point iterations, but this introduces ‘noise’ that can interfere with finite difference

estimates for the gradient. Thus, proven probabilistic analysis or optimization algorithms

may not converge for these systems. For example, Mahadevan and Gantt (1998) show

that a traditional probabilistic optimization approach for a coupled electronic packaging

system does not converge for many starting points and requires over 10,000 function

evaluations for those starting points that do lead to convergence.

Multidisciplinary Optimization (MDO)

The standard optimization problem is formulated as follows:

Minimize f(x) (1)

Subject to g(x) = 0 and h(x) ≥ 0

where x is a vector of design variables, f(x) is the objective function, g(x) are the equality

constraints, and h(x) are inequality constraints. Both gradient-based and non gradient-

based non-linear programming algorithms are available to solve problems of this type.

Obviously, gradient-based methods require at a minimum that the objective function be

differentiable in the first order. When gradients cannot be obtained directly,

approximation methods such as finite differencing are often used.

In a multi-disciplinary context, the optimization problem is expanded to include

state variables, u(x), representing the results of intermediate, disciplinary analyses:

Minimize f(x, u(x)) (2)

Subject to h(x, u(x))) = 0 and g(x, u(x))) ≥ 0
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The state variables must satisfy the multi-disciplinary compatibility requirement, often

written in matrix form:

Ai(x, u(x)) = 0, for each i = 1,.., number of disciplines in system (3)

A direct approach is to reduce the MDO formulation to the standard optimization

problem through variable reduction. In other words, the only independent optimization

variables are the design variables, x, and the disciplinary state variables, u(x) must be

solved for at every iteration in the system optimization. This is also known as the

Multidisciplinary Feasible Method (MDF). The limitation to this approach is that it can

be computationally expensive. A reduction in the overall computation time may be

accomplished if disciplinary analyses can be done in parallel. This approach requires an

MDO problem formulation that decouples the disciplinary analyses from the

multidisciplinary system optimization and from one another. Methods that use this tactic

vary in the way they achieve disciplinary autonomy (a decoupling mechanism) and

ensure multidisciplinary feasibility (a re-coupling mechanism). In the Individual

Discipline Feasible (IDF) method, for example, auxiliary variables representing

interdisciplinary flow are used to achieve autonomy for disciplinary analyses.

Multidisciplinary feasibility is maintained in the system optimization through

compatibility constraints that must be satisfied at the final solution. Since disciplinary

autonomy is not maintained through the optimization (only for analysis), computational

difficulties in integration often remain. In another method, collaborative optimization

(CO), disciplinary feasibility is achieved through disciplinary optimization problems and

system-level compatibility constraints. Here, system-level design variables (ξ, ν) are
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decoupled from disciplinary design variables (x, u(x)). Compatibility constraints are

added that require the sum of square of the errors to be zero.

Minimize f(ξ, ν) (4)

Subject to C(ξ, ν) = 0,

where C(ξ, ν) is a system of constraints of the form, [ ]22
)(

2

1
iiiii xuxc −+−= νξ

Separate disciplinary optimizations are performed to minimize the compatibility

condition (ci). Constraints other than the compatibility constraints may be given at the

disciplinary level (Alexandrov and Kodiyalam, 1998).

Both IDF and CO have practical limitations for complex problems due to the

nature of the interdisciplinary coupling formulations. Bi-level Integrated System

Synthesis (BLISS) is a method developed and refined at NASA (Sobiesczanski-Sobieski

et al, 2000), which uses sensitivity derivatives to reduce the complexity of

interdisciplinary coupling. Like CO, optimization is performed at both disciplinary and

system levels. System-level derivatives are calculated at a given design point; these

derivates define a linear model of the system objective function which becomes the

objective function for the disciplinary optimizations. BLISS is particularly useful in that

it is a modular formulation that can integrate disciplinary analysis tools at different

fidelity levels appropriate to different design phases.

Probabilistic Analysis and Optimization

Alternatives for formulating probabilistic optimization problems are discussed in

the first chapter. For example, both the global RLV design and the tank sizing

applications have the following form:
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))((Minimize F xfxµ (5)

subject to

fx PxfgP ]0))(([ ≤≤

where )(xf x is the probability density function for the design variables, Fµ is the mean of

the objective function, 0))(( ≤xfg x signifies failure to meet the constraint, and fP is

the acceptable (or design) failure probability. An first-order second moment (FOSM)

method was used to estimate Fµ and the Rackwitz-Fiessler First-order Reliability

Method (FORM) was selected to evaluate ]0))(([ ≤xfgP x .

Like optimization, probabilistic analysis is usually an iterative process, which

multiplies the cost of a single multidisciplinary analysis. For probabilistic optimization, a

nested analysis is generally required with probabilistic analysis in an inner loop and

optimization in an outer loop. For example, to solve the formulation given in equation

(5), the Rackwitz-Fiessler Newton step is applied iteratively each time the optimization

algorithm calls for an evaluation of the constraint. This compounds the problem of

computational expense. However, if commonalities between optimization and

probabilistic analysis can be exploited, there is hope to streamline probabilistic MDO.

To understand these commonalities, it is useful to review the premise behind the

first order reliability method (FORM). It is essentially an optimization problem where

the objective function is the reliability index β, which is the minimum distance from the

origin to the limit state in standard normal space. The point on the limit state at which

this minimum β occurs is referred to as the most probable point or MPP. (As a reminder,

a graphical representation of the FORM concept is reproduced in Fig. 3).
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Figure 3. First - Order Reliability Method

Finding the most probable point is expressed as an optimization problem:

Minimize )
'*

()
'*

( T
XX= β (6)

Subject to

0)( ' =Xg

In the applications of the previous two chapters, the Rackwitz-Fiessler Newton-

type formula (Eq. 4 in Chapter II) was used iteratively to find the MPP. Other

optimization algorithms such as sequential quadratic programming (SQP) may be used

instead. Furthermore, alternate formulations for multidisciplinary systems like those used

in many MDO methods could prove helpful.

Decoupling: A Strategy for Multidisciplinary Systems

Decoupling is a basic tactic for handling multidisciplinary analysis, and it is the

basis for many of the MDO methods such as those discussed earlier in the chapter (e.g.

IDF, CO, BLISS, etc.) Consider, for example the traditional MDO formulation:
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Minimize f(x, u(x)) (7)

Subject to h(x, u(x))) = 0 and g(x, u(x))) ≥ 0

and the Individual Feasible Method (IDF) formulation:

Minimize f(x, u)) (8)

Subject to h(x, u) = 0, g(x, u) ≥ 0 and u(x) = u

In the IDF approach, decoupled auxiliary variables, u, replace the coupled state

variables, u(x). The additional constraint, u(x) = u, enforces system compatibility at the

optimal solution but not necessarily at each iteration. From a probabilistic perspective,

using auxiliary variables raises some interesting questions. For one, state variables that

are dependent on random input variables will obviously be random variables themselves,

but how does one select an appropriate probability density function (pdf)? Also, if

competing pdf’s are obtained from each discipline, what is the appropriate compatibility

requirement? Finally, if assumptions are made regarding pdf’s for the auxiliary variables,

how will any errors propagate to the system output variables? In other words, can the

result be trusted?

In the sections that follow, three probabilistic analysis techniques for feedback

systems are given. The first technique was presented by Du and Chen (2002) and uses

the IDF MDO formulation in applying the first-order reliability method. The second

technique uses a first-order second moment (FOSM) method to characterize state

variables. The final technique uses the idea of Gibbs sampling in order to apply Monte

Carlo probabilistic analysis to the decoupled system. Each of these techniques is applied

to a mathematical two-discipline example system. In addition, as a baseline, the basic

Monte Carlo method and FORM (using both sequential quadratic programming and the
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Rackwitz-Fiessler Newton-type formula of Eq. 4 in Chapter II) are applied to the same

system without decoupling. The results are compared with respect to accuracy and

computational efficiency.

Mathematical Example: 2-Discipline System

This example is a two-discipline system as depicted in Fig. 1. It was taken

from Du and Chen (2002). The functional relationships are as follows below.
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The limit state for the system is given by g1, so that the probability of failure, Pf, is given

by Pf = P(g1 < 0).

Although this coupled system may be solved algebraically by variable reduction,

the applications are all based on using fixed-point iteration for feedback convergence. (In

other words, a trial value of u2,1 is selected, u1,2 is computed from analysis 1, then u2,1 is

computed from analysis 2; the process is repeated with the new value for u2,1 until it

converges.) This is done to simulate the behavior of real multidisciplinary systems that

don’t have closed form solutions. For the same reason, finite differencing is used to

approximate the gradients even though analytical derivatives could easily be derived.
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Decoupling Techniques

Decoupling with the First-Order Reliability Method

Consider the optimization formulation for the first-order reliability analysis (Eq.

6) re-written for a coupled system (Eq. 9):

Minimize )
'*

()
'*

( T
XX= β (9)

Subject to

0))'(,( ' =XuXg

(Here state variables, )'(Xu , are added input to the limit state function as would be the

case for a multidisciplinary system.)

In the context of multidisciplinary analysis, special MDO techniques may be

employed. For example, Du and Chen (2002) present the basic IDF MDO formulation

below:

Minimize )
'*

()
'*

( T
XX= β (10)

Subject to

0),( ' =uXg

)'(u Xu =

With this formulation, though the end product is probabilistic information

( )( β−Φ=fP ), the most probable point (MPP), 'X , is a deterministic value; therefore,

the state variables at the MPP, )'(u X , are deterministic. Thus the questions raised earlier
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in the chapter, concerning how to characterize a probability density function of u, do not

apply.

Both the coupled formulation (Eq. 9) and the uncoupled formulation (Eq. 10)

were solved using a standard sequential quadratic programming (SQP) algorithm. The

solutions are compared with one another as well as with Monte Carlo and FORM using

the Rackwitz-Fiessler (R-F) method on the coupled system. The results are given in

Table 1.

Table 1: Comparison of Coupled vs. Uncoupled FORM Methods

Method β Pf Number of disciplinary analyses*

Monte Carlo 5919.1)0557(.1 =Φ− .0557 180,186

FORM with
R-F Method

1.6252 .0521 324

FORM with SQP
Coupled System

(Eq. 9)

1.6252 .0521 1840

FORM with SQP
Uncoupled System

(Eq. 10)

1.6252 .0521 370

*The number of analyses includes finite difference runs to approximate the gradient.

From Table 1, it may be seen that all FORM algorithms produced the same result,

regardless of whether it was applied to the coupled system (traditional “black box”
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approach) or the uncoupled system (IDF approach). However, using the uncoupled IDF

formulation netted a five-fold reduction in the total number of function evaluations over

that of the coupled system. (Similar results were found by Du and Chen, 2002.) The

computational effort is similar to that of the RF-FORM method, which typically

converges more quickly than sequential quadratic programming. Further research may

explore the possibility of using a decoupling technique in conjunction with the RF-

FORM; at this point, it is unclear how the compatibility requirement (i.e. )'(u Xu = )

should be enforced within the Rackwitz-Fiessler Newton step algorithm.

Decoupling with First Order Second Moment Methods

One method of characterizing the auxiliary variables is by applying a first-order,

second moment (FOSM) method (Haldar and Mahadevan, 2000) on the coupled system.

Mean values and standard deviations may be estimated for a function, f(x), from

equations (11) and (12) below.

)( xf f µµ ≈ (11)
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

∂
∂≈σ (12)

If a finite difference process is used, n+1 (where n is the number of variables in x)

evaluations of the function, f, are needed. This leads to (n+1)*(Y) disciplinary function

calls, where Y is the number of disciplinary analyses required in the fixed-point iterative

process for system convergence.
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FOSM may be applied directly to system output variables (e.g. limit state

functions) to determine the probability of failure. For a limit state, g, the probability of

failure, Pf, may be estimated in accordance with Eq. 13.
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
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σ
µ

(13)

where gµ and gσ are found from equations (11) and (12) above. Although this method

is computationally inexpensive, it is also not often very accurate, especially for non-linear

limit states when the failure region is far from the mean.

A partial FOSM method may be combined with more accurate probabilistic

analysis techniques through a decoupled approach. The same computational effort used

to derive gµ and gσ for the system output, g, could be used to derive uµ and uσ for the

system state variables, u. If a distribution (e.g. normal) is then assumed, the state

variables become ordinary random variables, enabling traditional probabilistic analysis

methods (e.g. sampling methods, first-order reliability methods, etc.) to be applied at the

discipline level. This avoids further convergence loops for system compatibility.

Both the direct FOSM and the partial FOSM approach rely on significant

assumptions, namely that the first order approximation for the mean and standard

deviation is adequate and that the variables follow a normal distribution. In general,

FOSM ignores any affect of non-linearity in the response function and any non-normal

behavior of input variables. However, with the partial FOSM approach, these

assumptions only apply to the state variables. Known distributions for other input

parameters and the effect of non-linearity in the response function for the output variable

may still be captured by more sophisticated probabilistic analysis tools.



72

Two partial FOSM techniques are employed on the example system. Both

techniques use FOSM on the coupled system to estimate the mean and standard

deviations of the state variables; they assume the state variables follow a normal

distribution. The first method adds a Monte Carlo analysis of discipline 1 to determine

the probability of failure, Pf. The second method adds a RF-FORM analysis of discipline

1 to determine Pf. These methods are compared with Monte Carlo, RF-FORM analyses,

and FOSM analyses on the coupled system. Results are given in Table 2.

Table 2: Comparison of Coupled vs. Uncoupled FOSM Methods

Method β Pf

Number of
disciplinary

analyses*

Monte Carlo 5919.1)0557(.1 =Φ− .0557 180,186

Rackwitz-Fiessler (R-F)
FORM

1.6252 .0521 324

FOSM 6661.1
3001.

500.1 ==
ag

g

σ
µ

.0478 126

FOSM with Monte Carlo 5982.1)0550(.1 =Φ − .0550 10,126

FOSM with RF FORM 1.6251 .0521 148

*The number of analyses includes finite difference runs to approximate the gradient.

As expected, the FOSM method on the system is not very accurate. However,

using the partial FOSM method with RF-FORM increases the accuracy with very little

additional computational effort. When RF-FORM is applied to the system, 324 function
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calls are needed. This is due to the fixed-point convergence looping in both the

evaluation of the limit state and for the gradient. For the partial FOSM/R-F method, no

system convergence loops are needed, resulting in a significant computational savings.

The same is true for Monte Carlo analysis. Although ten thousand iterations are called

for, each system analysis call requires approximately 18 function calls in the convergence

process. This is not needed when parameters of the state variable, u2,1, are approximated

with FOSM; in this case, each Monte Carlo run calls for a single disciplinary analysis. In

this example, using the partial FOSM results in significant computational savings without

adding detectable inaccuracy. This may not be true for all systems.

Decoupling with Gibbs Sampling

The final strategy is based on the same principles of convergence used in Gibbs

sampling, a Markov Chain Monte Carlo methodology used frequently in Bayesian

inference applications (Gilks et al, 1996). In Gibbs sampling, sample points are chosen

from conditional probability distributions. This concept may be used to obtain samples

for the state variables of a multidisciplinary analysis. In this case, the conditional

probability is given by the applying the appropriate disciplinary analysis. This becomes

an academic example of Gibbs sampling since the conditional probability ‘distribution’ is

a discrete number.

For example, consider the two-discipline mathematical multidisciplinary analyses.

The probability density functions of the system input variables (x1, x2, and xs) are known.

These variables are independent, so traditional Monte Carlo sampling may be used to

generate their samples. The state variables (u1,2 and u2,1) are dependent on the input
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variables and one another. This dependency is given by the appropriate disciplinary

analysis; for a given sample of x1, xs, and u2,1, the conditional probability of u1,2 is a

deterministic value determined by analysis 1. A psuedo-code for the example problem is

given below:
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Here each Monte Carlo ‘run’ requires only two function evaluations, one for each

disciplinary analysis. The Gibbs method does not enforce multidisciplinary system

convergence at each run; instead, it takes advantage of decoupling, relying on the

sampling process to produce compatibility in the limit. Fig. 4 depicts the relative

convergence of the Gibbs sampling methodology with traditional Monte Carlo on the

coupled system. At first glance, the convergence properties of the Gibbs method and

traditional Monte Carlo appear similar. However, because each Gibbs run requires much



75

less computational effort (2 function evaluations versus 18 for traditional Monte Carlo),

the Gibbs method is more efficient and leads to the same result.

Figure 4: Convergence Comparison of Gibbs vs. Basic Monte Carlo

Summary

In this chapter, strategies for taking advantage of decoupling in performing

probabilistic analysis of multidisciplinary systems have been evaluated. The first

strategy is to solve the first-order reliability problem according to current MDO

formulations. The second strategy is based on using first-order second moment

approximations for the parameters of state variables in conjunction with traditional

probabilistic methods such as Rackwitz-Fiessler FORM or Monte Carlo. The final

strategy uses Markov Chain Monte Carlo sampling.
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Each of these ideas has promise but needs to be examined in more detail. For

example, there are a number of other MDO methods that could be applied to the first-

order reliability formulation. In addition, gradient approximations are a key factor when

using either FORM or FOSM. Decoupling should be able to be exploited to a greater

extent in this area. Another topic for future research could examine ways to combine the

Gibbs sampling approach with efficient Monte Carlo schemes such as importance

sampling (Haldar and Mahadeven, 2000). Finally, the techniques should be evaluated on

a number of different multidisciplinary problems to evaluate their robustness.
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CHAPTER V

COMPLEX MULTIDISCIPLINARY SYSTEMS

In the previous chapter, decoupling strategies for probabilistic analysis were

investigated for integrated systems. These strategies were analyzed at a conceptual level

for a simple mathematical example system. In real systems, the complexity of

interdisciplinary coupling and the computational effort required for the individual

disciplinary analyses raises the bar for probabilistic analysis and optimization.

In this chapter, probabilistic analysis is undertaken for a Navy hypersonic missile

system involving five disciplines. An intermediate build of the Integrated Hypersonic

Aeromechanics Tool (IHAT) (Baker et al, 2002) is used for the multidisciplinary

analysis.

From this application, it becomes evident that new strategies are needed before

probabilistic analysis and optimization tools can effectively be combined in the analysis.

This is even truer for the newest IHAT model, which incorporates fidelity upgrades in

certain disciplines. Thus, in addition to the probabilistic analysis demonstration, this

chapter highlights directions for future research in developing computationally efficient

methods for probabilistic optimization of complex multidisciplinary systems.

Integrated Hypersonic Aeromechanics Tool (IHAT)

The Office of Naval Research is currently pursing a multi-disciplinary analysis

capability for the design of hypersonic weapons systems, leading to the development of
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an Integrated Hypersonic Aeromechanics Tool (IHAT) (Baker et al, 2002). This ‘tool’ is

an analysis model, which integrates standalone disciplinary components (consisting of

either commercial software or in-house legacy codes) through their data streams.

Phoenix integration’s Model Center software (Phoenix Integration, 2002) was used as

the integration core which links the disciplinary analyses. An experimental vehicle built

in the 1970’s, the air-launched low volume ramjet (ALVRJ), is being used as a test case

(Tetens, 1977).

Intermediate Build 0.5

The intermediate version (build 0.5) of the IHAT model integrates 5 disciplinary

components: Geometry (using commercial software PATRAN), Aerodynamics (using

Air Force legacy code S/HABP Mark V), Propulsion (using legacy code PERFORM),

and Mass (an interim code which computes fuel burn along a simulated trajectory.) The

coupling relationships between the analyses are depicted in Fig. 1. The geometry

component scales the ramjet based on five geometric parameters: length, diameter, inlet

area ratio, nozzle area ratio, and fin height. These five parameters are essentially the

system design variables. The output of this module is a geometry file needed for the

aerodynamics analysis and several calculated areas necessary for the propulsion analysis

(combustor area, nozzle area, etc.) The Aerodynamics module analyzes the ALVRJ

geometry at different mach levels, angles of attack, and control surface deflections. The

output for this module is a database that includes coefficients for axial force, normal

force, and pitching moment at the various flight conditions. Similarly, the Propulsion

module creates a database at various conditions (mach level, altitude, angle of attack, and
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engine efficiency ratio.) This database includes calculated values for thrust coefficient,

fuel flow rate, and thrust. For the current model, the structural analysis is a simple

parametric equation used to relate geometric effects on the structural weight. The output

from this analysis is structural and empty weight and center of gravity. The Mass module

computes fuel burn along a simulated trajectory. Inputs for this analysis include the

databases from the propulsion and aerodynamics analyses, vehicle mass information, and

a trajectory file. Outputs include maximum control surface deflections, stability margin,

and remaining fuel. Finally, the Results component gathers the data to calculate fuel

and volume margins.

Improved Model: Build 1

This version of the IHAT analysis enhances build 0.5 with added analyses and

higher fidelity modules. A structural module that employs MSC NATRAN to perform

stress analysis and structural sizing replaces the parametric model ob Build 0.5. The

aerodynamics module is replaced by a variable fidelity analysis, which uses S/HABP

(Gentry et al, 1973) for low fidelity aerodynamic analysis and OVERFLOW (Buning et

al, 1998) for high fidelity analysis. A thermal module is added based on NASA’s

MINIVER program. (Build 1 brings approximately a twenty-fold increase in the

computational effort over Build 0.5, mostly due to the NASTRAN structural sizing

analysis.)
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Figure 1: IHAT Inter-disciplinary Information Flow

Probabilistic Analysis on the IHAT Model

Probabilistic analysis was performed on the IHAT build 0.5. In this analysis, five

random input variables are considered as shown in the Table 1. Note that all five random

variables relate to a single discipline: geometry. In this problem, all five are also design

variables. However, it is easy to include random variables from other disciplines in the

analysis. The mean values are based on the ALVRJ test case. Normal distributions with

a 10% coefficient of variation were chosen simply for the sake of demonstration.
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Table 1: Random Variables

Variable distribution mean cov

length Normal 190 0.1

radius Normal 20 0.1

ar-inlet Normal 0.55 0.1

ar-nozzle Normal 0.7 0.1

fin height Normal 19.9 0.1

The goal of the analysis was to find the probability that the fuel margin exceeded

100 lb. The fuel margin is the output of the five-discipline analysis shown in Fig. 1. The

first order reliability method was used. As a reminder, the Rackwitz-Fiessler algorithm is

given again in Eq. 1:
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The gradient vector, )( '*
kXg∇ was estimated from a simple forward difference

procedure. Six iterations were required to converge to the MPP with β equal to 1.64.

This corresponds to a probability of Φ(-1.64) = .05. It should be noted that finding the

gradient required N+1 (N is the number of random variables) ‘runs’ of the multi-

disciplinary analysis. Thus, the total calculation required 6 * (5+1) = 36 evaluations of

the multi-disciplinary analysis. This is still much better than a Monte Carlo analysis,

which would require 1900 simulations to establish a 5% probability of failure within a

20% error. Although achievable for Build 0.5, this number of iterations will likely not be
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acceptable for the more expensive analyses involved in Build 1. In addition, adding an

optimization outer loop would appear to make the problem even less tractable.

Direction for Future Work

Future research should be directed toward synthesizing probabilistic analysis

techniques with the IHAT multi-disciplinary optimization (Build 1), enabling design

decisions based on performance reliability and cost. This work should consider the

effects of various sources of uncertainty on system performance reliability, as discussed

below.

Uncertainty in System Variables

A straightforward probabilistic analysis for the IHAT model considers the

uncertainty in system variables. In other words, system parameters are not known

deterministically, but are assumed to have some probability density function describing

their variability. This type of uncertainty is inherent and for the most part irreducible.

An example formulation that accounts for this type of uncertainty follows:

Maximize Expected (mean) Fuel Margin = f(µdesign) (8)

where µdesign is the mean for the design variables.

Subject to P(g1 = Volume Margin < 0) < Pf1 (8a)

P(g2 = 30 - Max delta < 0) < Pf2

P(g3 = 30 + Min delta < 0) < Pf3

The fuel margin here represents available weight for payload. The volume margin is the

additional volume available in the fuel tank, and the min and max delta are extreme
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control surface deflections. Alternately, the constraints may be considered as a single

system failure constraint:

P{(g1 < 0)∪ P(g2 < 0) ∪ P(g3 < 0)}< Pfs (8b)

where g1, g2, g3 are the same functions defined above, ∪ represents the union of

constraint failure events, and Pfs is the acceptable probability of system failure. The

significance of the union is that it defines system failure as the case when any one

constraint has not been satisfied. This is similar to the multiple failure mode approach

used in Chapter III.

Although the formulation is fairly straightforward, the multidisciplinary nature of

both the objective and constraint functions complicates the solution of this optimization

problem. The computational time of a single system analysis is multiplied, first by the

number of iterations required for probabilistic analysis for each constraint, and second by

the number of optimization iterations. The computational expense issue will be

compounded if iterative feedback loops become a part of the system analysis with future

models. Furthermore, the problem is exacerbated by the need for gradient calculations

for both optimization and probabilistic analysis. However, there are many

developments in the field of multidisciplinary analysis and multidisciplinary optimization

that may have application to probabilistic MDO. These include approximation modeling,

efficient derivative approximations, distributed problem formulations, and multi-level

optimization algorithms. Future research should explore an array of these methods to

facilitate the solution of the above probabilistic MDO formulation.
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Statistical Uncertainty

Another type of uncertainty known as statistical uncertainty arises from sparse

data on the system variables. Rarely are system variables so well understood that

engineers are precisely able to characterize them with probability distribution functions.

Instead they typically use whatever data is available to make predictions of the

distribution parameters (e.g. mean and standard deviations) for these variables. These

predictions are made with a degree of uncertainty, which can be quantified if the

parameters themselves are treated as random variables. For example, if missile length is

a system variable with inherent variability, it may be represented by a distribution with a

specific mean, µlength and standard deviation, σlength. To the extent that µlength and σlength

are uncertain, they may have their own random distribution parameters, µµ, σµ, µσ, and

σσ. In this case, the system failure probability will also be a random variable, and

confidence bounds may be used to articulate the uncertainty in this calculation. Note that

statistical uncertainty arises only from a lack of data regarding the system variables; it

may be reduced through additional testing so that randomness in system variables is

better understood.

Model Uncertainty

Another issue for system reliability assessment is model uncertainty. Design of

complex systems is typically progressive in nature, stepping up from lower-fidelity, less

expensive analysis to higher fidelity, more expensive analysis. Thus, during the first

stages of conceptual design, the low-fidelity analysis tools typically have a large degree

of model uncertainty, which is independent of parametric uncertainty. This type of
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uncertainty, if properly quantified, could ideally play an important role in model selection

and refinement during the various stages of design. When the model uncertainty for a

particular low-fidelity disciplinary analysis has a minor effect on the uncertainty of

system performance, there is little cause to expend additional resources to upgrade to a

higher fidelity analysis. Conversely, if a system is very sensitive to the uncertainty of a

given disciplinary model, increases in its fidelity will significantly reduce the uncertainty

of system performance. Future research should explore methods for evaluating model

uncertainty as part of a strategy for choosing disciplinary model fidelity based on system

requirements.
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CHAPTER VI

CONCLUSION

Summary

The future of aerospace design is dependant on the ability to analyze and improve

complex multidisciplinary systems. In this environment, a methodology to evaluate cost

and risk, and to facilitate design trade-offs, is of utmost value. Three key principles that

apply in this effort include probabilistic analysis, optimization, and multidisciplinary

integration. Developing tools that combine these three principles is a daunting but

necessary task. In this vein, some practical techniques for probabilistic analysis and

optimization of multidisciplinary systems have been investigated in this study.

First, probabilistic optimization was performed for the global, geometry design of

a reusable launch vehicle. This application used a response surface methodology to

integrate a three-discipline system including geometry, weights, and aerodynamic

analyses. Reliability was defined by the probability of meeting performance constraints

and evaluated by the First-order Reliability Method (FORM). Cost and risk trade-offs

were accomplished through a probabilistic optimization formulation. The technique

proved to be computationally efficient, yield believable results, and bring added value to

deterministic optimization. The limitation, however, is that the approach relied on a very

low-fidelity system analysis (i.e. the response surfaces). While possible adequate for the

earliest stages of conceptual design, these methods need to be elevated for higher fidelity

multidisciplinary models.
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Next, probabilistic optimization was performed for the structural sizing of a liquid

hydrogen tank. Here probabilistic data flowed down from the global design to the local

level. In addition, the optimization was constrained by the system reliability, which was

evaluated for multiple failure modes. In stepping from the global design of chapter two

to the local design of chapter three, this application demonstrated a systematic process for

linking design at differing levels.

In Chapter IV, three concepts were investigated to facilitate probabilistic analysis

on a multidisciplinary system with feedback using a decoupling strategy. These include:

(1) using MDO methods with the first-order reliability formulation, (2) using first-order

second moment methods to characterize state variables, and (3) using Gibbs sampling to

enforce system compatibility in the limit rather than for each iteration. Finally, in

Chapter V, probabilistic analysis was undertaken for an intermediate build of a high

fidelity analysis of a Navy missile system. This application highlighted many of the

computational challenges in implementing probabilistic optimization in complex

multidisciplinary systems.

The goal of this study was to present a strategy for conceptual system design that

simultaneously addresses both cost and risk requirements. The general methodology

offered is probabilistic, multidisciplinary optimization. The methodology was

successfully demonstrated for low-fidelity analyses (possibly sufficient for conceptual

design), but much work remains before full probabilistic optimization can be employed

with high fidelity systems.
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Future Needs

Aerospace design relies on multidisciplinary models. Efficient methods are

needed to incorporate probabilistic optimization for these models without sacrificing the

fidelity appropriate for advanced stages of design.

In Chapter IV, a decoupling strategy was investigated for multidisciplinary

systems with feedback coupling. Although this strategy shows promise, additional

research is recommended to refine and test the techniques. For example, the Rackwitz-

Fiessler iterative algorithm is typically faster than other algorithms used to solve the first-

order reliability formulation; research should be directed toward combining this method

with decoupling MDO strategies. In addition, MDO formulations other than IDF (i.e.

CO, BLISS) could be investigated for their benefit in solving the first-order reliability

problem. As another example, the Gibbs sampling approach resulted in a nine-fold

improvement over traditional Monte Carlo for the demonstration problem. Perhaps the

Gibbs sampling approach can be combined with efficient Monte Carlo techniques (e.g.

adaptive importance sampling, etc.) for further improvement. Another tactic that should

be considered is using alternate gradient approximation methods. As shown in both the

mathematical system of Chapter IV and the missile application in Chapter V, gradient

computations have a significant impact on the total computational effort.

Chapter V offered a specific application (missile system design) for future

research involving a complex, high-fidelity multidisciplinary system model. The need

for optimization tools that will account for various types of uncertainty (uncertainty in

system variables, statistical uncertainty, and model uncertainty) for these types of

systems is self-evident. However, serious challenges remain with respect to the



89

computational effort and robustness of traditional “black box” approaches to this

problem. Within the multidisciplinary optimization (MDO) field, several techniques are

available which may be effective in streamlining probabilistic MDO. This is another

recommended area for future work.

Finally, assessing the impact of reducible error sources (such as statistical

uncertainty, which can be reduced through testing, and model error, which can be

reduced by using higher fidelity models) would be a valuable tool enabling engineers to

make intelligent choices about how to invest resources. It is recommended that future

research be directed toward these kinds of tools as well.
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